
1. Introduction
Sediments contained in river channels are the products of physical erosion and chemical weathering of 
rocks outcropping in upstream catchments (e.g., Caracciolo, 2020; Weltje, 2012; Weltje & Eynatten, 2004). 
During transport, sedimentary geochemistry is altered by processes including chemical weathering (i.e., 
reaction of primary minerals with natural waters to form secondary minerals and solutes), sorting, cati-
on-exchange, and selective transport/deposition (e.g., Bouchez et al., 2012; Bouchez, Gaillardet, et al., 2011; 
Tipper et al., 2021). As fluvial sediments can be transported on timescales of order 10 10

2 3    years, their 
geochemistry probably represents a spatial and temporal integration of catchment processes (Repasch 
et al., 2020). Consequently, they are frequently studied to understand the rates and location of chemical 
weathering, physical erosion and sediment transport (e.g., Canfield, 1997; Ercolani et al., 2019; Gaillardet 
et al., 1999; Garzanti et al., 2012, 2014; Lupker et al., 2012; Riebe et al., 2003; Schneider et al., 2016; Viers 
et al., 2009, 2013).

River sediment is also routinely sampled in geochemical surveys, which provide data for mineral resource 
exploration, environmental monitoring, and wider geologic understanding (e.g., Garrett et al., 2008). Sedi-
ments in streams integrate the geochemistry of upstream catchments. As such, sampling them can provide 
efficient means to survey large areas, complementing, for instance, national surveys of soils or outcropping 
rock (e.g., National Geochemical Surveys of Australia and Geochemical Baseline Survey of the Environ-
ment [G-BASE], UK; Caritat & Cooper, 2016; Johnson, Flight, et al., 2018). The shape and size of sampled 
catchments can, however, vary significantly. We therefore seek a quantitative understanding of how drain-
age network topologies integrate geochemical signals.

Geochemical mixing, in-transit modification or selective deposition may all take place in river systems. 
Hence, the extent to which downstream sediment geochemistry can be used to constrain upstream com-
position is challenging to quantify. This study seeks to address this problem by developing an inverse 
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methodology. This approach uses a small number of observations of downstream composition and the 
topology of drainage networks to make testable predictions of upstream chemistry.

1.1. Study Design

Consider a river catchment containing three geochemical endmembers that correspond to, for example, 
lithologic units. These endmembers are represented as orange, green, and purple areas in Figure 1. The 
sediment in rivers draining each of these regions inherits the geochemistry of these sediment sources, as 
indicated in Figure 1 by the pie charts representing the contributions from each endmember. Downstream 
geochemistry changes as tributaries draining different sources join or the river erodes a different source re-
gion. The “forward” problem, as we define it here, is to predict the composition of sediment at sample sites 
downstream given the spatial distribution of geochemistry in source regions and a known drainage net-
work (Figure 1b). An example of this forward problem was implemented and successfully validated in Lipp 
et al. (2020). The inverse problem addressed in this study attempts to predict source region composition by 
inverting the known sediment compositions at sample sites downstream (Figure 1c).

In this manuscript, we consider “source region geochemistry” to be the elemental composition of river 
sediments in the uppermost portion of the drainage network, that is, first order streams. We recognize that 
other definitions of source region geochemistry might be preferred, most obviously the composition of the 
underlying bedrock. We use the geochemistry of stream sediments as our target, rather than bedrock, be-
cause stream sediments have likely already undergone chemical weathering on hillslopes prior to entering 
the drainage network. We note that stream sediment geochemistry is strongly influenced by the composi-
tion of underlying bedrock and moderated by weathering (see e.g., Kirkwood et al., 2016). Stream sediments 
hence incorporate geochemical information about both lithology and weathering whereas bedrock can only 
inform about lithology.

Given the ubiquity of mixing in the Earth sciences, a number of quantitative unmixing procedures have 
been developed. The most general case of unmixing is where both the endmembers (i.e., the compositions 
that are being mixed) and the mixing proportions are sought, so as to explain variability in a proposed 
mixture data set (e.g., Menke, 2012). Weltje (1997) developed a numerical solution to this general problem, 
which has been used to unmix, for example, fossil abundances, rock magnetism and grain size distributions 
(Dam & Weltje, 1999; Dekkers, 2012; Weltje & Prins 2007). In the instance where the endmembers are as-
sumed to be known, calculating the mixing proportions is relatively straightforward, and frequently solved 
on an ad hoc basis or as part of a Bayesian framework (e.g., Stock et al., 2018). The unmixing problem we 
consider differs in that we explicitly seek the spatial structure of both the endmembers and the mixture, that 
is, geochemical maps of source regions and the composition of downstream river sediment samples, respec-
tively. This approach is most similar to that developed by De Doncker et al. (2020). They sought the spatial 
pattern of erosion in a catchment through a Bayesian inversion of downstream sediment tracers. We, in-
stead, seek the composition of source regions given mixing proportions calculated using drainage networks.

1.2. Outline

We first introduce the study area, the Cairngorms mountains, UK. Compositions of sediment sources in 
this part of Scotland are well constrained, which provides the means to assess model predictions. We then 
describe how observations of sedimentary composition downstream were acquired from 67 samples along 
trunk channels and tributaries. Next, we summarize a forward model that uses the structure of drainage 
networks to convert maps of source region geochemistry into predictions of downstream sediment geo-
chemistry. The inverse problem is then posed, in which the unknown geochemistry of source regions is 
sought. A description of how this problem can be solved by inverting the composition of downstream sam-
ples is provided. We minimize an objective function that includes both data misfit and model smoothing. 
The fidelity of predicted source compositions generated from inverse models are first assessed using syn-
thetic inputs. We then present the results of inverting real geochemical data from downstream sediment 
samples. These results are evaluated using independent geochemical survey data from the study region. 
Finally, suggested improvements and future work are discussed.
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1.3. Study Area

This study is focused on five rivers draining the Cairngorms Mountains, Scotland, UK: Dee, Deveron, Tay, 
Don, and Spey (Figure 2a). River sediments were extracted from these channels at 67 sample sites indicated 
in Figures 2b and 2c. Sediments within these rivers have been previously analyzed by Lipp et al. (2020), 
where it was demonstrated that forward modeling can be used to make accurate predictions of downstream 
river geochemistry (see e.g., Figure  1). These rivers are therefore good candidates to explore the use of 
inverse modeling. The region is also well covered by the British Geological Survey's G-BASE (Johnson 
et al., 2005; Figure 2d). Consequently, there is a pre-existing independent data set that can be used to test 
predictions from inverse modeling. We also chose to study this region for three further reasons. First, for 
the UK, it has relatively high topographic relief and a high natural sedimentary flux. Second, a significant 
portion of the region is in a protected national park limiting potential anthropogenic effects. Finally, this 
region contains a variety of lithologic units and substrate compositions including mafic and felsic igneous 
intrusions hosted within meta-sedimentary units (Figure 3a).

2. Data and Methods
2.1. Topographic Data and Processing

The inverse scheme requires a drainage network to be defined. Drainage networks were extracted from the 
SRTM1s topographic data set downsampled to a square grid with resolution 200  E   200 m. Prior to down-sam-
pling the data underwent a cylindrical equal-area projection centered on the study area using GMT 6.0.0 
(Farr et al., 2007; Wessel et al., 2013). Depressions in the digital elevation model (DEM) were then filled 
using the “priority-flood” algorithm (Barnes et al., 2014). Subsequently, drainage networks were extracted 
from this DEM using the “D8” flow-routing algorithm, which allows drainage area to be defined at every 
point in the model grid (O’Callaghan & Mark, 1984). The locations of major channels, that is, cells with 
upstream area 25

2
km  are shown in Figures 2a–2c. All landscape modeling calculations were performed 

using the LandLab 2.2.0 package for python 3.8.5 (Barnhart et al., 2020; Van Rossum & Drake, 2009). Ex-
tracted drainage networks are displayed throughout the manuscript (e.g., Figures 2a–2c).

Figure 1. Predicting provenance: Composition of sediments in rivers and upstream sources from forward and 
inverse modeling. (a) Schematic showing composition of source regions (X, Y, Z), drainage network (white lines), and 
composition of sampled river sediments (white circles). In this simple scheme, composition of sediment in rivers (e.g., 
colored pie charts) is determined by the composition of upstream source regions. (b) Schematic shows the forward, 
“mixing,” problem when the source region geochemistry is known and the downstream composition at sample sites is 
predicted (see Lipp et al., 2020). (c) The inverse, “unmixing,” problem attempts to reconstruct the composition of source 
regions from the point observations of downstream sediment composition, which is the focus of this study.
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2.2. Upstream Source Region Geochemistry

Predicted source compositions can be tested using the independent G-BASE geochemical survey data. 
G-BASE sampled the fine-grained, 150 μm, fraction of bed-material of low-order stream sediments (i.e., 
those with very small upstream areas) with an average sampling density of 1 per 2 2kmE  . These sediment 
samples were subsequently analyzed for a range of geochemical analytes. In the study region, this analysis 
was performed principally by Direct Reading Optical Emission Spectrometry, with the exception of urani-
um which was analyzed by Delayed Neutron Activation. The sampling and geochemical analytic procedure 
used by G-BASE, as well as quality control measures, are described by Johnson, Ander, et al. (2018) and 
Johnson, Flight, et al. (2018).

Figure 2. Introduction to study area: Cairngorms, UK. (a) Topography from SRTM1s digital elevation model. Transparent overlay indicates region outside the 
five studied river catchments. Black lines = river channels with upstream area 25

2
km  . Rivers labeled: S = Spey, Dv = Deveron, Dn = Don, De = Dee, T = Tay. 

Inset shows location of study area. (b) Location of 67 sediment sample sites (red circles) on river channels used to predict the composition of upstream source 
regions. (c) Unique drainage area segments corresponding to each sample site; color indicates area of sub-catchment, which approximates effective resolution 
of the inverse model (see body text). (d) Black points = Geochemical Baseline Survey of the Environment geochemical survey sample sites, which are used to 
test the accuracy of predicted source region chemistry. Gray points lie outside of studied catchments.
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Figure 3. Geology and geochemistry of Cairngorms. (a) Geologic map of studied area, reproduced with the permission of the British Geological Survey 
UKRI, all rights reserved. Major lithologies indicated: FIg = Ordovician to Devonian felsic igneous intrusions; MIg = Ordovician to Silurian mafic igneous 
intrusions; SR = Sedimentary rocks, mostly Devonian sandstones; MS = Meta-sedimentary rocks, mostly Neoproterozoic psammites. See mapapps.bgs.ac.uk/
geologyofbritain/home.html for full geologic key. (b) Concentration of magnesium in first-order stream sediments from Geochemical Baseline Survey of the 
Environment (G-BASE) survey. Note relationship to lithology shown in panel (a) and similar spatial structure to other elements displayed in panels (c–e). (c) 
Potassium. (d) Titanium. (e) Principal component map for 22 elements in G-BASE data set following a centered log-ratio transformation (Aitchison, 1983). 
The first three principal components of the data set are extracted and converted into a red-green-blue ternary space, which highlights the major geochemical 
domains in the study region. White lines indicate simplified lithological map to highlight key geochemical domains. See panel (f) for key. (f) Ternary plot 
showing relationship between color, principal components, and geochemistry. Reds and greens indicate compositions that are relatively enriched in elements 
such as U, Be, Rb indicating felsic association and metallic elements (e.g., Li, Pb, Cu, Co), respectively; blues indicate relative enrichment in alkaline earth 
elements (e.g., Ca, Sr, Ba). The displayed principal components explain 62.1% of the total variance.
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The G-BASE stream sediment geochemical survey, like other high sample density surveys, primarily reflects 
geochemical variations in the underlying bedrock (Everett et al., 2019). The geological map of the study 
region is shown in Figure 3a. Figures 3b–3d show the concentration of magnesium, potassium, and titani-
um respectively in stream sediments from the G-BASE data set. These geochemical maps show the strong 
relationship between stream sediment geochemistry and the underlying lithology (Figure 3a). For example, 
the felsic intrusions at the center of the studied region are low in Mg and Ti but enriched in K.

2.3. Principal Component Analysis

The geochemical variability of the region can be examined and simplified using principal component anal-
ysis (PCA; e.g., Kirkwood et al., 2016). PCA rotates multi-dimensional data onto a smaller number of prin-
cipal components (PCs) along which variance is maximized. This rotation therefore simplifies a data set. 
As geochemical data sets are compositional in nature (i.e., strictly positive data that sum to a constant), a 
log-ratio transformation ought to be applied prior to application of PCA. In this instance, we use the cen-
tered log-ratio transformation (Aitchison, 1983). We apply PCA to both the G-BASE data sets and predicted 
chemistry. Singular value decomposition was used to define PCs (scikit-learn; Pedregosa et al., 2011).

To visualize three PCs simultaneously, we transform them using a red-green-blue (RGB) mixing ternary 
diagram (e.g., Figures 3e and 3f) as follows. The scores on the first three PCs are calculated, raised to an 
exponent and then normalized by the sum of these three exponentials. The resulting values (which sum to 
one) are then used to weight the red, green, and blue channels respectively for visualization. The first PC 
corresponds to relative enrichment in felsic associated elements (e.g., U, Be, Rb) and defines the felsic intru-
sions at the center of the study region. The second PC corresponds to an enrichment in certain metals (e.g., 
Pb, Cu, Li) and appears to demarcate the different sedimentary units. The third PC corresponds to relative 
enrichment in some alkaline earths (Sr, Ca, Ba) and identifies the mafic intrusions in the northeast of the 
study area. Figure 3e displays the first three PCs of 22 elements from the G-BASE data set in the RGB terna-
ry space (Figure 3f), where the RGB channels correspond to the (normalized exponents of the) first, second 
and third PCs, respectively. This map shows the principal geochemical domains of the region. A goal of the 
inverse modeling is to reconstruct these principal geochemical domains using a small number of sediment 
samples gathered downstream.

2.4. Downstream Sediment Geochemistry

The 150 μm fraction of bed material was gathered from localities on the studied rivers and analyzed for 
their elemental geochemistry. This data set was first reported in Lipp et al. (2020). In total, 67 samples were 
gathered from 63 sample sites (Figure 2b). The sample sites divide the study area into a series of nested 
sub-catchments, which are displayed in Figure 2c. Sampling density means that the majority of sub-catch-
ments have areas 200–400  2kmE  . In the southern portion of the Tay catchment, lower sampling density re-
sults in sub-catchments with greater areas (Figure 2c). While a larger suite of elements was gathered, we 
focus on the following 22 elements, which are present in the downstream samples and were measured 
consistently by G-BASE in the study area: Ba, Be, Ca, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Ni, Pb, Rb, Sr, Ti, U, 
V, Y, Zn, and Zr. This subset was selected so that predictions from the inverse model can be evaluated using 
the independent G-BASE data set.

The sampling procedure we used replicated the standard G-BASE sampling protocol. This replication 
makes the data gathered directly comparable between the two data sets. Bed material was extracted from 
the river channel by shovel and deposited on a sieve-stack. First, a 2 cm grill was used to remove pebbles. 
The material was then rubbed through a 2 mm and then 150 μm nylon sieve into a fiberglass collecting pan. 
After letting suspended sediment settle out for E 15 min, excess water was decanted, and the homogenized 
sediment slurry was poured into a reinforced paper bag. Each paper bag was placed within a sealed plastic 
bag to prevent contamination. The bagged sediment samples were air-dried until they had the consistency 
of modeling clay, before being freeze-dried for short-term storage prior to geochemical analysis.

The freeze-dried sediments were powderised in an agate ball mill and homogenized, and an analytical sub-
sample taken by cone-quartering. For each geochemical analysis, 0.25 g of powder was accurately weighted 
into Savillex tubes. The powders were digested using HF, HNO3 and HClO4 on a hotplate. After digestion, 
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the sample was resolubilised using HNO3 and H2O2 and analyzed for a full suite of elements using an Agi-
lent 8900 Inductively Coupled Plasma Mass Spectrometer at the British Geological Survey.

2.5. Uncertainties

We consider two principal sources of geochemical uncertainty in our data: analytical and sampling. First, 
the analytical uncertainty of measured elemental concentrations was assessed by processing of standards 
in the laboratory. Apart from elements Zr, Y and Ti, which had slightly lower concentrations than the stand-
ards, measured compositions were successfully reproduced (see Lipp et al., 2020, where these data were 
first presented). The second, larger, source of uncertainty is the variability of measured compositions within 
each sample site which reflects both local geochemical heterogeneity as well as error introduced by the sam-
pling protocol. This can be assessed using duplicate samples. Statistical analysis of the duplicate samples, 
reported in Lipp et al. (2020), indicated that the vast majority ( 95 % for most elements) of the geochemical 
variability in these samples reflects variation between sample sites, not local heterogeneity or sampling 
error. Nonetheless, there are only eight duplicates available (one pair each from the Spey, Deveron, Don, 
and Dee rivers), so calculated statistics must be treated with some caution. With this caveat in mind, the 
duplicates can be used to generate an estimate of the uncertainty of our data. The log standard deviation, 
 jE  , of each element calculated from the four duplicate pairs is 0 16.  and tends to be highest for metallic 
elements (e.g., Ti, Zr, Hf, Cu, Ag, Au, Sn, Pb). It varies systematically between 0.04 and 0.08 for rare earth 
elements (e.g., La to Lu). The log standard deviation of many other elements is considerably smaller, for 
example it is 0.014 for magnesium. An obvious way to improve the quality of these statistics in the future 
is to incorporate more duplicate samples. Note that for most elements  jE  is much lower than the intersite 
variability, as reflected in the results of the ANOVA shown in Lipp et al. (2020).

3. Forward and Inverse Modeling
3.1. Forward Model

Here we describe the procedure to predict downstream sediment geochemistry given a known distribution 
of geochemistry and topography in the source-region. The forward model as described here has been imple-
mented and successfully tested for this region previously (Lipp et al., 2020). Let ( , )E C x y  be the concentration 
of some element in the sediment source regions of a drainage network, for example, magnesium. E C can be 
approximated by geochemical surveying, for example, Figures 3b–3d. We seek to predict E D which is the 
concentration of that same element in downstream sediments at a point in a river which has an upstream 
drainage area, E A . The concentration downstream, E D , is simply the sum of the contributions to this element 
from every upstream point in the basin, E A , normalized to the total sediment flux. If E A has a spatially varying 

erosion/surface-lowering rate, 

zE
t

 , then each point in E A contributes  

zE C
t

 amount of the target element, 

that is, the total amount of sediment produced by that point, multiplied by the concentration of the element 

in question. The total sedimentary flux is the total amount of erosion occurring upstream, that is, 
A

z

t
A




d  . 

Combining these relationships provides the following estimate of concentration in downstream samples

D
z

t
A

z

t
C A

A

A











1

d

d .
 (1)

Under this formulation, the concentration of an element in sediment downstream can be predicted if the 
erosion rate and concentration can be defined at all points in the upstream region, assuming instantane-
ous sediment transport and no in-transit chemical modification (e.g., De Doncker et al., 2020; Sharman 
et al., 2019). This approach assumes that all chemical weathering happens in-situ (e.g., on hillslopes) before 
sediments enter the fluvial system.

An unknown in this formulation is erosion rate, 

zE
t

 . As 

zE
t

 is required to be defined continuously across the 

studied region, a reasonable approach is to use landscape evolution models. The widely used stream power 
model, for example, predicts erosion rates using empirical relationships between slope angle, upstream area 
and erosion rate (see e.g., Howard & Kerby, 1983; Tucker & Whipple, 2002). Alternatively spatial patterns of 
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erosion rate have be constrained using detrital geochronology (e.g., Avdeev et al., 2011; Braun et al., 2018; 
Fox, Leith, et al., 2015; Stock et al., 2006; Vermeesch, 2007). In Lipp et al. (2020), the stream power model 
was used to predict erosion rates and hence composition of sediment downstream using Equation 1 for the 
same data set used here. Changing model parameters had a minor effect on the goodness-of-fit for down-

stream data. In fact, spatially homogenous incision (i.e., constant 

zE
t

 ) was found to provide, by a small mar-
gin, the best fit to the data downstream. These results, combined with the results of tests in which substrate 
was varied, indicated that downstream geochemistry was much more sensitive to the drainage network 
topology and source region geochemistry. Hence, in this study we proceed with this assumption of homoge-
neous incision. The validity of this assumption of spatially constant incision will be implicitly tested when 
predictions from inverse modeling are compared to independent data.

Under the assumption of homogenous incision (i.e.,  

zE k
t

 , where E k is a constant, e.g., one), Equation 1 can 
be simplified further to give

D x y F C
A

C A
A

( , ) ( ) .  
1

| |
d (2)

This equation simply states that the composition of sediment downstream, E D , is an equal area weighted 
mixture of the composition of its upstream region. In summary, Equation 2 is the forward model, ( )E F C  , we 
use to transform a spatial map of upstream geochemistry, ( , )E C x y  , into a prediction of sediment geochem-
istry downstream, ( , )E D x y  . Figure 4 shows solutions to this forward problem. In this example the mapped 
concentration of Mg from G-BASE (Figure 3b) is used as E C and input into the forward model to predict the 
downstream sediment concentration,  ( )E D F C  . This predicted downstream concentration is shown in Fig-
ure 4a with the true observations overlain.

Figure 4. Predicting chemistry downstream: Example of solving the forward problem. (a) Colored lines show predicted concentration ( E C ) of magnesium 
along rivers generated by integrating magnesium concentrations from the Geochemical Baseline Survey of the Environment survey with respect to distance 
downstream (Figure 3b; see body text). Colored circles are 67 independent spot measurements of magnesium concentration in river-sediments (see Lipp 
et al., 2020). (b) Cross-plot of observed, ( )E CF  , and predicted, obsE D  , magnesium concentration at the 67 sample sites. Black line = 1:1 relationship. Global misfit 
(1.28) is the summed squared differences between the logarithm of F( )C  and obsE D  (see body text; e.g., double-headed arrow).
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3.2. Defining the Inverse Model

3.2.1. Discretising Source Region Composition

The goal of the inverse procedure is to identify the upstream geochemistry, E C , that best fits point observa-
tions downstream. Here we describe a procedure for objectively determining E C . First, E C is discretized as an 
E x y grid. ( , )E C x y  can be represented as a vector, C of length equal to the number of grid-cells contained 

within or overlapping the studied drainage area. For example, a 5 5E   km resolution grid of the study area 
can be recast as a vector of 601 scalar values. This discrete vector can be upsampled to the resolution of the 
base DEM used to perform flow routing (e.g., 200  E   200 m in this study). The upsampled grid, E C , can then be 
used by the forward model to calculate the composition of the sediments downstream.

As geochemical data are relative (not absolute), we seek the natural logarithm of concentration, log( )E C  
(Aitchison, 1986; Pawlowsky-Glahn & Egozcue, 2006). Consider, for example, the change in concentration 
of some trace-element from 0.01 wt% to 1 wt%. This relative change of 100 times the original value is gener-
ated by an absolute change of 0.99 wt%. If that same element changes in concentration again to 2 wt%, the 
relative change is only two times the intermediate value, much smaller than the initial change. However, 
the absolute change is in fact larger, that is, 1 wt%. Given that elemental concentrations frequently traverse 
many orders of magnitude, the objective function must be sensitive to relative, not absolute, changes in 
concentration. In logarithmic space, the first change in concentration is correctly identified as traversing a 
greater compositional distance than the second change, hence its application here.

We note that as compositional data are strictly bounded between 0 and some closure value (e.g., 100%, 610E  
ppm), the sigmoidal logit function should be used instead of a logE  function. However, given that the ele-
ments we analyze are generally 10 wt%, where the logit and logE  functions are functionally identical, we use 
a logE  function as its computational burden is lower.

3.2.2. Data Misfit and Uncertainty

We seek the upstream geochemistry vector, E C , that generates theoretical compositions downstream that best 
fit observed compositions. The observations can be represented as a vector, obsE D  . In the examples explored 
in this study obsE D  contains 67 values (i.e., the number of downstream samples). Predicted concentration at 
each sample site ( )E F C  can be expressed in vector notation as ( )E CF  . The inverse model seeks to minimize the 
difference between obsE D  and ( )E CF  , that is,

22
,log{ ( )} log{ } log{ ( ) } log{ } ,obs i obs i

i
C F C D    F D‖ ‖ (3)

where  {1,2 }E i N  , here  67E N  . A visualization of the misfit between observed and predicted concentra-
tions is shown in Figure 4b.

3.2.3. Regularization

This inverse problem is likely to always be underdetermined (i.e., there are fewer observations than free 
parameters). In the example, we consider there are almost an order of magnitude more unknown compo-
sitions (upstream source) than known compositions (downstream samples). Underdetermined problems 
are often solved by imposing constraints on properties of the solution, for example, minimizing roughness 
(Parker, 1994). In this instance, we seek smooth geochemical maps that best fit the composition of the 67 
downstream samples. We do so by penalizing the roughness of upstream geochemistry, E C . We define rough-
ness here as the sum of the square of the Euclidean norms of the first derivative of log( )E C  in both the E x and 

E y directions, that is,

2 2log( ) log( ) .C C
x y

 


 
‖ ‖ ‖ ‖ (4)

To quantify the first-derivative we calculate the first discrete difference between adjacent values of the grid 
of log( )E C  values in both the E x and E y directions, assuming Von Neumann boundary conditions that are equal 
to zero (i.e.,      log( ) log( )C x C y/ / 0 ).
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3.2.4. Minimizing the Objective Function

Considering both the data-misfit and roughness constraints, the best-fitting source-region chemistry is that 
which minimizes the following objective function, ( )E X C

RoughnessData Misfit

2 2 2 2log( ) log( )( ) log{ ( )} log{ } .obsX F
x y


  

      

C CC C D


‖ ‖ ‖ ‖ ‖ ‖ (5)

The hyper-parameter E  controls the extent to which roughness is penalized. High values of the “smoothing 
coefficient” E  result in solutions which are spatially very smooth but fit the data poorly (underfitting). Con-
versely, very low values of E  result in very good fits to the data but resultant maps of E C which are geologically 
implausible due to their spatial roughness (overfitting). We seek the smoothest model that best fits the data 
and systematically tested   2 210 10E  for each element. We choose the value of E  that lie at the point of 
maximum curvature (the “elbow”) of data-misfit as a function of model roughness (Parker, 1994). We note 
that, while pragmatic and objective, this particular approach does not always identify the model that best 
matches independent observations (see e.g., Bodin & Sambridge, 2009). In this study, we can test the appro-
priateness of the chosen value by comparing model predictions to independent observations (Figure S5 in 
Supporting Information S1).

As we seek log( )E C  , which must be raised to an exponent prior to being entered into the forward model, 
this is a nonlinear inversion and unlikely to be amenable to linearization. Assuming that there is no an-
alytic solution for the minima of E X , we minimize Equation 5 numerically. We minimized E X , with respect 
to log( )E C  , using Gao and Han (2012)'s implementation of the Nelder-Mead (downhill simplex) algorithm 
using SciPy libraries (Press et al., 1992; Virtanen et al., 2020). The algorithm finishes when the change in 
the objective function and the maximum change of any parameter between subsequent iterations is less 
than 410E  . Both these criteria must be met for convergence. We chose to use a simple constant-value starting 
condition such that log( )E CC  . E C is the average composition of the five most downstream samples from the 
Spey, Deveron, Don, Dee, and Tay rivers weighted by upstream area.

The Nelder-Mead algorithm requires 510E  – 610E  iterations for convergence (10–100 hr on a standard desktop 
computer with a 2.5 GHz Intel i7 processor). The number of iterations depends on the element being in-
verted and the E  value. Preliminary work instead indicates that a different optimization algorithm, Powell's 
conjugate gradient method, could generate equivalent results at significantly less (10–100 times) computa-
tional cost. A Jupyter notebook containing python implementations all of the calculations described above 
is provided (see Data Availability Statement).

4. Results
4.1. Synthetic Examples

First we explore the extent to which this inversion scheme can recover a known, synthetic, input. Figure 5a 
displays a synthetic source-region geochemistry for an arbitrary geochemical element. This “chequerboard” 
pattern has a peak-to-trough distance of 40 km. From this synthetic input, we then calculate the composi-
tion of downstream samples, which become the “observations” used to invert for a source composition. We 
invert 67 “observations” at locations corresponding to the actual sample locations along the Spey, Deveron, 
Dee, Don, and Tay rivers. If the inverse scheme is working correctly, the optimal ( , )E C x y  should match the 
input map displayed in Figure 5a.

Comparison of Figures 5a and 5b shows that the inverse scheme successfully recovers locations and ampli-
tudes of the geochemical signal in almost all of the source region. We emphasize that this input was recov-
ered using just the 67 (synthetic) observations at the sample sites (red dots in Figure 5b). The “pixelation” 
in Figure 5b is a result of the discretization of E C , discussed above, but does not prevent the scheme from 
resolving the significant spatial signals. The optimal solution to the inverse problem and the synthetic input 
are compared on a cross-plot in Figure 5c. Note that the input grid is downsampled (block-mean) to the 
same resolution as the inverse model predictions prior to comparison. The data lie clustered close to the 1:1 
line with an 2RE  of 0.71 and root-mean-square (RMS) misfit of 0.20. These results indicate that the inverse 
model is unbiased and explains the majority of “observed” variance.
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Figure 5. Predicting geochemistry in source regions: An example of solving the inverse problem. In this example, we test the fidelity of the inverse model 
by inverting for a synthetic (i.e., completely known) source composition using real rivers and positions of actual sample sites. (a) Map of synthetic element 
concentrations in source regions generated using a 2D sine function (peak-to-trough = 40 km). This map was used to calculate sediment concentrations at 
sample sites downstream by solving the forward problem, which were then inverted for source composition. (b) Predicted source region composition calculated 
by inverting synthetic compositions at the 67 sample sites. In this example, smoothing parameter   0.510E  . (c) 2D histogram of observed and predicted source 
region concentrations; the grid resolution of observed and predicted composition is 5 5E   km (see panel b). 1:1 relationship is shown by gray dashed line; black 
solid line = linear regression. (d) Misfit between observed and predicted source composition. Color bar is discretized on intervals equal to global root-mean-
square (RMS) misfit. Misfit is highest in regions of low sample coverage (see Figure 2c). Inset shows histogram of misfits with binwidth = global RMS misfit; 
best-fitting normal distribution (black curve) is shown for comparison. Analogous figures for synthetic inputs with different input wavelengths are given in 
Figure S1 in Supporting Information S1.
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Figure 5d shows that the residuals are not randomly distributed in space. The residuals have a Moran's E I 
of 0.08. While this value is low in magnitude, which indicates a generally small effect size, this value was 
greater than the expected E I under the null hypothesis with a p-value 0 05.  . These results suggest that the 
residuals have a statistically significant spatial structure. We attribute this structure to sampling density. For 
example, the south of the studied region has larger residuals. This region coincides with low sampling den-
sity (Figures 2c and 5b). Where the sample density is more consistently high, across the rest of the region, 
the optimal inverse model successfully recovers “observed” composition.

Figure  6 shows how the best-fitting upstream geochemistry relates to the observations of geochemistry 
downstream. Figure 6b displays the predicted downstream geochemistry for the optimal solution shown in 
Figure 5b. Overlain on this panel are the synthetic “observations,” which were inverted for upstream com-
position. Figure 6c is a cross-plot of synthetic “observed” downstream concentrations against the predicted 
concentration from the best-fitting inverse model. These points all lie clustered on the 1:1 line indicating 
that the model was able to fit the downstream data well. The variation in predicted geochemistry of the ar-
bitrary element as a function of downstream distance, with the observations overlain, is shown in Figure 6e. 
The discrete “jumps” in concentration are caused by tributaries joining the main channel. In summary, the 
optimal inverse model fits “observed” downstream sediment geochemistry accurately ( 2 1E R  , RMS→ 0E  ).

Figure S1 in Supporting Information S1 shows the results of systematically varying the spatial distribu-
tion of synthetic source composition. When the spatial structure is small (  (10)E O   km) the inverse scheme 
cannot resolve spatial variability in source composition. However, longer wavelength spatial structures are 
accurately predicted. These results indicate that, with the data available, the inverse scheme can resolve 
geochemical spatial structures with wavelengths  20E   km or longer.

The synthetic examples discussed above only consider smooth changes in the input signal. However, sharp 
changes in geochemistry may occur in reality caused by, for example, changes in lithology. Figure S2 in 
Supporting Information S1 shows the results from a test analogous to that shown in Figure 5 but with sharp 
changes in geochemistry. The results indicate that, as expected, the smooth inverse model does not capture 
the loci of sharp changes in composition but the wider structure is successfully recovered.

Real geochemical data will incorporate some amount of random noise, generated by a range of process-
es (see discussion of uncertainties above). We test the robustness of predicted upstream geochemistry to 
noisy data by performing an inversion in which a Gaussian distribution of noise was added to the synthetic 
downstream data. The magnitude of noise was equal to 5% of the total data variance. The results of this test 
(shown in Figure S3 in Supporting Information S1) show that despite the noise the target geochemical map 
is successfully recovered.

4.2. Real Data

Having successfully trialled the inversion scheme on synthetic examples we now minimize Equation  5 
for the concentration of each studied element independently, for our study area. We seek to identify the 
smoothest distribution of source region chemistry ( , )E C x y  that minimizes misfit to 67 data constraints down-
stream. Predicted ( , )E C x y  is tested using the independent G-BASE geochemical survey data set.

As an example, we focus first on the results for magnesium. The solutions displayed in Figures 7 and 8 use 
a smoothing coefficient   0.310E  . This value was chosen as it lies in the “elbow” of the data-misfit—rough-
ness plot shown in Figure 9a. Each point on this graph corresponds to the roughness and data-misfit of a 
solution which minimizes Equation 5 for a specified E  . Choosing E  values greater than the optimum clearly 
over-smooth the solution relative to the independent G-BASE data set resulting in a poor-fit to the data 
(Figures 9e and 9f). Conversely, reducing E  allows the scheme to overfit the data with results which are 
implausible in reference to the independent data set (Figures 9b and 9c). E  must be calibrated in this way 
for each element. Comparing independent observations to predicted upstream concentrations indicates that 
the chosen value of E  is close to the optimal value (see Figure S5 in Supporting Information S1).

Figure 7a shows the predicted concentration of Mg upstream that best-fits the composition of the 67 down-
stream samples. Figure  7b shows Mg from the G-BASE database downsampled to the resolution of the 
inversion grid. The two maps show the same spatial structure. The low Mg concentration of sediments 
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derived from the felsic intrusions in the center-left of the region are correctly identified by the inverse solu-
tion. Similarly, the two lobes of high Mg concentrations in the upper-right of the region, corresponding to 
sediments derived from mafic intrusions, are also correctly identified in the best-fitting inverse model. A 
cross-plot of G-BASE data and predicted concentrations is shown in Figure 7c. This figure shows that the 

Figure 6. Downstream chemistry from best-fitting inverse model: Inversion of synthetic “observations.” (a) Best-fitting source region geochemistry generated 
by inverting synthetic “samples” shown as colored circles in panel (b), see Figure 5b. (b) Colored lines = predicted downstream sediment concentrations 
from best-fitting inverse model. Filled circles = synthetic “observations” that were inverted for source composition. (c) Cross-plot of observed and predicted 
concentrations at each downstream sample site (black circles). Gray dashed line = 1:1 line. (d) Colored lines indicate locations of river long-profiles displayed 
in panel (e): S = Spey, Dv = Deveron, Dn = Don, De = Dee, T = Tay. (e) Colored lines = predicted sediment concentration from best-fitting inverse model along 
the rivers shown in panels (b and d). Colored dots show concentrations at the sample sites indicated by black crosses in panel (d).
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predictions correlate with the independent data set and clusters around the 1:1 line. We emphasize again 
here that the solution displayed in Figure 7a is completely independent of the G-BASE survey data and 
calculated using only the 67 samples collected downstream. Residuals are normally distributed around 0 
and higher in regions where model coverage is low (Figure 7d). The predicted downstream geochemistry, 
that is, ( )E F C  , for this optimal solution is displayed in Figure 8. Comparing the predicted downstream chem-
istry indicates that the model captures the important geochemical variability within and between drainage 

Figure 7. Inverting real downstream sediment samples for concentration of magnesium in source regions. (a) Optimum upstream concentration of 
magnesium generated by inverting the magnesium concentration of the 67 samples gathered downstream with smoothing parameter   0.310E  (see Figures 4 
and 8a and body text for details). (b) Independent Geochemical Baseline Survey of the Environment (G-BASE) stream sediment concentration of magnesium 
gridded to same resolution as panel (a); see Figure 3b for full resolution map. (c) Cross-plot of observed (G-BASE) and predicted concentrations for each grid 
cell (5 km resolution). Colors show misfit discretized at intervals equal to global root-mean-square (RMS) misfit (0.195). Gray dashed line = 1:1 relationship; 
black line = linear regression. (d) Misfit between observed magnesium concentration and best-fitting inverse model. Inset indicates distribution of residuals and 
normal distribution; bin-width = global RMS misfit (0.195). Note higher residuals in regions of low coverage identified in Figure 2c.
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basins. A cross-plot of predicted and observed downstream geochemistry indicates that the model is unbi-
ased with a regression close to the 1:1 line, and explains 76% of the total variability. We also compare our 
model predictions for Mg to the full resolution G-BASE data set in Figure S4 in Supporting Information S1. 
This comparison should be treated with some caution however as it is unreasonable to expect the inversion 
to resolve details on a scale less than the resolution of the model.

In Figure 10, we compare independent data to predictions from the inverse model for four other elements, 
chosen as they show a range of different chemical affinities. Calcium (Figures 10a and 10b) shows a broadly 
similar spatial structure to magnesium in both the inverse solution and the independent data set. The maf-
ic, Ca-rich intrusions in the northeast are correctly identified by the inverse solution as well as the felsic, 
Ca-poor intrusions in the center of the region. Rubidium (Figures 10c and 10d) has a different chemical 
affinity to Mg and Ca, and is generally associated with felsic rocks. The best-fitting inverse solution for Rb 
correctly identifies the regions of elevated Rb concentration associated with the felsic-intrusions. Converse-
ly there is a broad region of predicted low-Rb associated with the sedimentary units in the south-east. The 
distribution of vanadium is different again to the previous elements, and appears to be mostly set by north-
east-southwest trending sedimentary units. These separate domains are correctly identified by the inverse 
solution. Beryllium has a similar spatial structure to rubidium, consistent with its association with felsic 
units. The best-fitting maps for all other studied elements are given in the Figures S7–S25 in Supporting 
Information S1.

Figure 8. Evaluating the fit to downstream data from best-fitting inverse model: Magnesium. (a) Colored circles = measured concentrations at 67 sample sites 
used to invert for source composition. Colored lines show predicted magnesium sediment concentration along rivers from best-fitting inverse model shown in 
Figure 7. (b) Colored lines indicate locations of river long-profiles displayed in panel (c): S = Spey, Dv = Deveron, Dn = Don, De = Dee, T = Tay. (c) Colored 
lines = predicted concentration of magnesium in sediments along rivers shown in panel (b). Colored dots = observed concentrations at the sample-sites 
shown in panel (a). (d) Cross-plot of observed and predicted concentrations of river sediments at the 67 sample sites. Colors = misfit; gray dashed line = 1:1 
relationship; black line = regression.
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Figure 9. Identifying the optimum value for smoothing parameter, E  . (a) Data misfit versus model roughness for inverse models with different smoothing 
parameter values (colored circles). This example shows best-fitting concentrations of magnesium. Arrows indicate the points corresponding to the solutions 
displayed in panels (b–f). Small values of E  result in rough solutions that over-fit the data, for example, panels (b and c). High values of E  produce smooth 
solutions that are a poor fit to the data, for example, panels (e and f). Optimum solutions lie in the “elbow” of this tradeoff plot (Parker, 1994). The optimal 
solution used in this study is shown in panel (d).
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Figure 10. Inverting selected elements in downstream samples for source composition and a comparison to 
independent data. (a) Predicted calcium concentration from inverse model with   0.310E  . (b) Independent 
Geochemical Baseline Survey of the Environment stream sediment calcium concentration gridded to same resolution 
as panel (a). Inset shows cross-plot of observed and best-fitting theoretical concentrations; gray line = 1:1 relationship; 
black line = regression. (c and d) Rubidium,   0.410E  . (e and f) Vanadium,   0.710E  . (g and h) Beryllium,   0.310E  .
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These results indicate that the inverse model is able to successfully recover the spatial distribution of geo-
chemistry for elements with a range of different geochemical affinities. Figure 11a summarizes compari-
sons of predicted source region composition and the independent G-BASE data set ( 2RE  and RMS values). 
Figure 11b compares the predicted and observed concentrations for downstream sediments. Note that re-
sults for Cu and Pb are not presented because systematic sweeps of the smoothing coefficient, E  , did not 
yield optimal values in a reasonable amount of time. Mean 2R 0.32E  and RMS = 0.23 for upstream predic-
tions and the independent G-BASE data set. Fitting of downstream data yields a mean 2RE  and RMS of 0.78 
and 0.09, respectively.

4.3. Multivariate Analysis

Studying the results from inverse modeling of elements individually neglects the important relationships 
that exist between elements. If our inverse scheme is successful it should also be able to recover geologically 
plausible relationships between different elements. By applying PCA to the upstream inverse solutions for 
all of our studied elements, we can determine whether our inversion has captured meaningful associations 
between the different elements. In addition, by plotting these associations spatially, we can examine wheth-
er it has recovered the different geochemical domains for the region identified in Figure 3.

The first three PCs of the suite of inverse results are shown in Figure 12a using a RGB ternary space. The 
relationships between the geochemical elements and these PCs are shown in Figure 12d. The first PC cor-
responds to relative enrichment in felsic lithophile elements (e.g., U, Be). The second PC is associated with 
metals (e.g., Ni, Co, Ti) and the third appears to be associated with mafic lithophile elements (Mg, Ca). 
These associations are very similar to the principal geochemical relationships of the G-BASE data set (Fig-
ures 3e and 3f). This result indicates that the inverse model correctly identifies major geochemical associa-
tions in this region. Moreover, the spatial distribution of these associations mimics that of the G-BASE PCA 
map, albeit at a lower resolution. The similarities of the G-BASE data structure to that of the predictions 

Figure 11. Statistical evaluation of inverse solutions. (a) 2RE  values and root-mean-square (RMS) misfit for best-fitting 
theoretical upstream geochemistry relative to independent Geochemical Baseline Survey of the Environment data 
set. See Figures 8 and 10 for visualization of this comparison. (b) 2RE  values and RMS misfit of predicted downstream 
concentration relative to the 67 samples inverted for upstream composition. See Figure 8 for a visualization of this 
comparison.
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from the inverse model, and their similar spatial patterns, indicate that the inverse approach can recover the 
principal geochemistry of the region.

5. Discussion
5.1. Deterministic Sedimentary Geochemistry

We show that inverse modeling of a small inventory of fluvial sediments can constrain the geochemistry 
of upstream source regions. Significantly, comparison to independent observations indicates that model 
predictions tend to be unbiased as residuals are distributed around zero. Successful unmixing suggests that 
sedimentary geochemistry is determined principally by conservative mixing of source compositions down-
stream. In transit processes appear to play a moderating role (Menges et al., 2020). Such deterministic be-
havior is encouraging for quantitative provenance analysis (e.g., Weltje & Eynatten, 2004). The results from 
this study validate approaches that have previously attempted to describe sediment geochemistry assuming 

Figure 12. Mapping geochemical domains using multivariate analysis and inverse modeling. (a) Principal component (PC) map generated using best-fitting 
inverse models for the 22 elements shown in Figure 11. The first three PCs were extracted from the best-fitting inverse models and passed into a red-green-
blue (RGB) ternary space. See panel (d) for key. Note similarity to the principal component map generated from the Geochemical Baseline Survey of the 
Environment (G-BASE) data set displayed in panel (b) (also in Figure 3e) and the relationship to lithological boundaries (white lines). (b) PC map generated in 
same way as panel (a) but using the G-BASE data set as input. White lines indicate lithological boundaries. Note that key for this PC map is given in Figure 3e. 
(c) Variance explained for each principal component. Arrow indicates chosen number of PCs (3) which explain 83% of the total variability. (d) RGB ternary plot. 
Reds indicate enrichment in elements with felsic association (e.g., U, Be). Greens indicate enrichment in metallic association elements (e.g., Ni, Co, Ti). Blues 
indicate mafic association elements (e.g., Mg, Ca).
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conservative behavior (e.g., Ercolani et al., 2019; Garzanti et al., 2012). While we consider the inorganic 
sediment fraction only in this study, this approach could in principle be used to understand organic geo-
chemistry which is also strongly controlled by mixing (Menges et al., 2020).

A relationship between climate and fluvial sedimentary geochemistry has been observed in some rivers 
(e.g., Canfield, 1997; Dinis et al., 2017; Gaillardet et al., 1999; Garzanti et al., 2013, 2014; Riebe et al., 2003). 
Therefore, the success of our simple mixing model, which does not explicitly consider any climatic effects 
(e.g., chemical weathering controlled by climate), is perhaps surprising. However, the results of these stud-
ies are not necessarily inconsistent as we consider only relatively small catchments, which do not cross large 
climatic gradients. An analogous study in areas of strong climatic gradients might be a means to produce 
maps of source region geochemistry and better explore the role of climate (e.g., Angola; Dinis et al., 2017).

5.2. Nonconservative Behavior

An exception to the general rule of unbiased predictions (i.e., residuals distributed around zero) is calcium, 
which is overpredicted relative to G-BASE (Figures 10a, 10b and S9 in Supporting Information S1). One 
explanation for this result is the adsorption of dissolved calcium cations to the surface of clays in sediments, 
which is observed in rivers globally (Lupker et al., 2016; Sayles & Mangelsdorf, 1979; Tipper et al., 2021). In 
contrast, the predicted spatial structure of zirconium is similar to that of G-BASE, but it is systematically un-
derpredicted (Figure S25 in Supporting Information S1). We attribute underprediction to the measurement 
of zirconium in the laboratory. Comparison to standards indicates zirconium measurements are underes-
timates because they tend to be hosted in resistate minerals. As a consequence, while the optimal model 
yields a reasonable good fit to measured downstream compositions, predicted concentrations in source 
regions are too low.

Hydrodynamic sorting imposes strong geochemical variability locally on sediments (Bouchez et al., 2011; 
Bouchez, Gaillardet, et al., 2011; Eynatten et al., 2012, 2016). We have attempted to avoid this effect by sam-
pling a constant grainsize fraction ( 150 μm) of bed material at each sample site. However, this implicitly 
assumes that the distribution of grainsizes beneath our threshold of 150E  μm is constant across all sites. 
Instances where this assumption is not valid may contribute to model misfit, for example where different 
lithologies produce sediments with different grainsize distributions. In future studies, this effect could be 
minimized by gathering grainsize data at all sites and performing statistical corrections (e.g., Bloemsma 
et al., 2012). Alternatively, for large rivers, depth profiles can be gathered across the water column and the 
geochemistry integrated across all grainsizes (e.g., Baronas et al., 2020)

5.3. Resolution and Other Limitations

Predictions from the inversion scheme are similar to low-pass filtered maps of the true source region geo-
chemistry. Figure 13 shows the optimal models for elements and G-BASE after application of a two-dimen-
sional Gaussian filter of width 25 km, which is the estimated effective resolution of the scheme deduced 
from inversion of synthetic data (see Figure S1 in Supporting Information S1). The spatial structure of the 
two filtered maps is similar for these elements. The effective resolution of the inverse model depends upon 
the size of the nested sub-catchments (see e.g., Figure 2c). Spatial variability within a sub-catchment is 
averaged out and hence unresolvable. Inverse modeling of synthetic and real observations shows that the 
most significant source of error is low sampling density (e.g., Figures 5 and 7). Sampling campaigns could 
be designed with the specific goal of creating nested, equal-area, catchments.

RMS misfit between the G-BASE data set and model predictions is low for all elements we studied. However, 
some elements, for example Mn, have an 2RE  close to zero. This result indicates that predicted compositions 
have no relationship to the G-BASE data set. Most low 2RE  values are associated with elements that have 
almost no long-wavelength spatial structure in the G-BASE data set (e.g., Figure S16 in Supporting Informa-
tion S1). Instead the distribution of these elements is dominated by short-wavelength variability. We suggest 
that the inverse model fails to replicate these observation because there is almost no long wavelength spatial 
structure to resolve in the first instance. This limitation could be remedied by greater sampling densities.
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Figure 13. Comparison of long wavelength ( 25  km) components of predicted and observed source region 
geochemistry. (a) Low-pass filter of predicted calcium concentrations. Figure 10a was filtered using a 2D Gaussian filter 
of width 25 km. (b) Calcium concentrations from the Geochemical Baseline Survey of the Environment data set low-
pass filtered using the same Gaussian filter. (c and d) Rubidium. (e and f) Vanadium. (g and h) Beryllium. Note that a 
comparison between the long wavelength components of observed and predicted magnesium concentrations are given 
in Supporting Information.
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Comparing model predictions to independent observations shows that concentrations of some elements 
(e.g., Mg; Figure 7) are over-predicted in areas of high concentration and under-predicted in regions of low 
concentration. We attribute this result to the chosen model not being sufficiently smoothed (i.e., the chosen 
E  value, extracted from the loci of maximum curvature in Figure 7c). This result is consistent with Figure S5 
in Supporting Information S1 which shows that the model that is a closest fit to the independent data for Mg 
is more smoothed than the model chosen by the method of maximum curvature. As a result, there appears 
to be a slight tendency for our approach to return an under-smoothed model (i.e., to overfit the downstream 
data). Although we note that the magnitude of the difference in fit to the independent data are small be-
tween the optimal and chosen models. This result indicates that exploring other methods to identify the 
“best” inverse model would be worthwhile. It is interesting that we tend to overfit the data given that the 
RMS misfit between the predicted and observed data are generally an order of magnitude greater than the 
estimated data uncertainties discussed above. This result indicates that processes other than a pure mixing 
model, and sampling error, contribute to the geochemistry downstream.

5.4. Further Work

The method presented here does not produce uncertainties for the predictions of source-region geochem-
istry. For practical applications of this method it would be highly desirable to generate uncertainties for 
the predictions. A number of ways to generate uncertainties exist. Cross-validation, where the data are 
repeatedly resampled with some random samples excluded before the inversion is performed, is one way to 
generate an ensemble of predictions. From this ensemble, both a central prediction and associated uncer-
tainties can be extracted.

A further approach to generate an ensemble of models is reversible jump Markov Chain Monte Carlo (rjM-
CMC) modeling, which has been successfully applied for seismic tomography, inverting river profiles for 
uplift histories, and for modeling thermochronological data (Bodin & Sambridge, 2009; Fox, Bodin, & Shus-
ter, 2015; Stephenson et al., 2006). In rjMCMC modeling, the spatial resolution of the solution adapts to the 
data itself. In this way, the scheme allows for rapid near-discontinuities where the data allows it, but does 
not solve for redundant nodes in areas of low coverage. It can also, alongside an optimum model solution, 
return an estimate of the uncertainty of the predictions and does not require a semi-subjective choosing of 
optimal inverse solutions.

A current limitation of the approach presented here is variable data coverage due to spatial variations in 
sample density. This issue could be partially ameliorated by careful sampling campaign design, or by using 
adaptive resolution methods such as rjMCMC discussed above.

The current approach treats each individual geochemical element separately. However, as shown in the 
PCA analysis (Figure  12), there is a large amount of redundant information between the different ele-
ments. This is a result of elements with similar chemical affinities behaving in the same way, and hence 
have strongly covarying concentrations. Therefore, inverting for the upstream concentrations for multiple 
elements simultaneously, potentially making use of dimension reducing techniques such as PCA, may be 
a more efficient approach than solving for each element separately. This approach would however have to 
respect the closure constraint imposed by compositional data (i.e., the summed concentration of all the 
elements must be strictly less than 100%).

5.5. Geochemical Mapping

Producing geochemical maps of Earth's surface remains an ongoing challenge for applied geochemistry. 
Geochemical maps are essential data-products for identifying regions of elevated elemental concentrations, 
which may indicate economic mineralization or contamination. Such maps may impact on the application 
of regulatory controls or agricultural land management (Ander et al., 2013). However, it is estimated that 
at present only 20 % of the Earth's surface has been mapped geochemically at any scale (Liu et al., 2021). 
Part of this challenge is due to the fact that mapping large, continental-scale, areas is logistically challenging 
and can be extremely expensive due to the large numbers of geochemical samples that must be processed. 
As a result, considerable attention has been focused on developing methods to produce geochemical maps 
with small numbers of samples (e.g., Birke et  al.,  2015; Cicchella et  al.,  2013; Liu et  al.,  2021; Smith & 
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Reimann, 2008). Unmixing of higher-order stream sediments could be a way to geochemically map large 
areas at low sample densities. For example, in the studied region, an area of 12,800 2kmE  , the G-BASE survey 
collected E  8,000 samples corresponding to a sampling density of 1 per 1.7 2kmE  . By contrast, we utilize 67 
samples, resulting in a density of 1 per 192 2kmE  . Despite this much lower sample density an inverse proce-
dure was shown to identify the dominant spatial geochemical structures of the region. While our scheme 
cannot resolve very fine spatial structures, in many instances, this limitation may be reasonable given the 
significant reduction in samples required.

6. Conclusions
A methodology to invert small inventories of river sediment compositions for the elemental composition 
of source regions is presented. This “unmixing” scheme was tested using real data gathered from five rivers 
in the Cairngorms, UK. Inversion of synthetic data indicates upstream spatial signals at scales 20 km can 
be recovered. The concentration of 22 elements across an area of 12,800 2kmE  were predicted by inverting 
67 downstream samples. Predictions are validated using independent observations from geochemical sur-
veying. They tend to be unbiased and successfully recover the long-wavelength (>20 km) distribution of 
chemical concentrations in the region. Multivariate analysis indicates that optimal inverse models success-
fully identify meaningful geochemical associations between different elements. The success of this unmix-
ing procedure indicates that in-transit modification of bulk sediment geochemistry is subordinate to the 
effect of mixing. Such inverse approaches are a novel way to map the geochemistry of large areas at a low 
sampling density. The results indicate that sedimentary elemental geochemistry is in part deterministic. 
Inverse schemes, such as the one we present here, are a step toward fully quantitative models of sediment 
provenance.

Data Availability Statement
Code and data are available at github.com/AlexLipp/unmixer and archived at the point of submission at 
https://doi.org/10.5281/zenodo.4693005.
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