
1. Introduction
A fundamental geomorphic concern is development of a quantitative understanding of the way in which 
tectonic and erosional processes combine to sculpt landscapes. Topographic evolution is of general interest 
since it plays a role in moderating environmental change as well as the distribution of natural resources 
and hazards. Longitudinal river profiles are particularly susceptible to environmental perturbations and are 
often exploited to investigate spatial and temporal patterns of regional uplift, biology, climate, hydrology, 
and substrate (e.g., Anderson & Anderson, 2010; Attal et al., 2008; Howard et al., 1994; Roberts et al., 2012; 
Whipple & Tucker, 1999; Whittaker et al., 2007, 2008; Zondervan et al., 2020). There is no accepted frame-
work for understanding scales at which geologic and geomorphic processes combine to generate observed 
river profiles. For example, we currently do not understand, if it is reasonable to expect processes that 
operate at short (<10 km) spatial scales (e.g., plucking, abrasion, log jamming, block toppling, changes in 
substrate, waterfall formation) to scale or combine so that they generate observed shapes of river profiles 
at larger scales. In other words, it is not clear that erosional processes acting at small scales or variations in 
channel substrate combine to generate observed river profile shapes. Thus, the roles that different processes 
play in generating topography and landscape evolution remain hotly contested.

The focus of this contribution is to attempt to quantify scales at which river profiles are generated. This 
information will provide the means to define scales at which different processes (e.g., uplift, changes in 
substrate, or lithology) contribute to longitudinal river profiles. Scaling regimes are defined using river pro-
files from both large (>1,000-km long) and small North American rivers that traverse a variety of tectonic, 
geologic, and climatic realms (e.g., Columbia, Colorado, Mississippi, Nelson, Appalachian catchments). 
This approach does not require assumptions to be made about how landscapes evolve before exploring scal-
ing regimes. An objective is to define universal behaviors of drainage patterns using the mapped spectral 
content of river profiles. Finally, we explore how a scale-dependent perspective of landscape evolution can 
be exploited to ensure that landscape simulations are consistent with observed landscapes over a significant 
range of scales (e.g., kilometers to thousands of kilometers).

Abstract A range of complex hydraulic and geomorphic processes shape terrestrial landscapes. It 
remains unclear how these processes act to generate observed drainage networks across scales of interest. 
To address this issue, we transform observed and synthetic longitudinal river profiles into the spectral 
domain with a view to interrogating the different scales at which fluvial landscapes are generated. North 
American river profiles are characterized by red noise (i.e., spectral power, ϕ ∝ k−2, where k is wave 
number) at wavelengths >100 km and pink noise (ϕ ∝ k−1) at shorter wavelengths. This observation 
suggests that river profile geometries are scale-dependent and using small-scale observations to develop a 
general understanding of large-scale landscape evolution is not straightforward. At wavelengths >100 km, 
river profile geometries appear to be controlled by smoothly varying patterns of regional uplift and 
slope-dependent incision. Landscape simulations, based upon stream power that are externally forced 
by regional uplift do not exhibit a spectral transition from red to pink noise because these simulations 
do not incorporate heterogeneous erodibility. Spectral analysis of erodibility extracted from patterns 
of lithologic variation along river profiles suggests that the missing spectral transition is accounted for 
by heterogeneous substrates, which are characterized by white or blue noise (ϕ ∝ k0 or k1). Our results 
have implications for the way by which rivers record large-scale tectonic forcing while incising through 
complex lithologic patterns.
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2. Background
2.1. Significance of Regional Uplift

From a geologic perspective, it is evident that regional uplift plays a central role in generating topography 
(e.g., England & Molnar, 1990; Holmes, 1945; King, 1978). Plate convergence, extension, and lithospheric 
strength are significant moderating influences (e.g., Cloetingh et al., 2005; Houseman & England, 1993; 
McKenzie, 1978). Subplate support by mantle convection can also generate topography with elevations of 
O(1) km (order of magnitude 1 km) at margins and interiors of plates on length scales of up to O(104) km 
(e.g., Burke & Gunnell, 2008; Hoggard et al., 2017; Japsen & Chalmers, 2000). Observational evidence and 
modeling results suggest that uplift rate histories play a key role in determining shapes of river profiles (e.g., 
Anderson & Anderson, 2010; Whittaker & Boulton, 2012). Generally accepted models of how river channels 
erode following uplift, or changes in base level, include transport-limited “diffusion” and detachment-limit-
ed (e.g., stream power) advective models (e.g., Whipple & Tucker, 1999, 2002). A three-dimensional formu-
lation of landscape evolution (i.e., z(x, y, t)) that incorporates uplift and these generally accepted erosional 
models can be written as

        
2( , ) ( , ) ( , ) ( , ),

m nz v x t A x t P x t z z U x t
t

 (1)

where z is elevation, t is time, v, m, n, and κ are erosional parameters that are calibrated using independ-
ent observations. A is upstream drainage area and P is precipitation rate, U is uplift rate, which varies as a 
function of space, x (upstream flow distance), and time (e.g., Braun & Sambridge, 1997; Hobley et al., 2017; 
Salles, 2016; Tucker & Bras, 1998). ∇ and ∇2 are maximum cell-to-cell slope and curvature. The first term 
on the right-hand side of Equation 1 is referred to as stream power erosion which predicts the headward 
advection of channel slopes (see e.g., Whipple & Tucker, 1999). The second term is erosional “diffusivity,” 
and is used to predict transport-limited erosion of hillslopes (Rosenbloom & Anderson, 1994). Values of 
erosional parameters, their spatiotemporal variability (or consistency), and their relationships to physical 
processes are debated (e.g., Anderson & Anderson, 2010; Attal et al., 2008; Howard et al., 1994). Optimal 
values appear to depend upon the scales at which observations are made or at which erosional models are 
calibrated (cf. Lague, 2014; Paul et al., 2014).

Equation 1 is often solved by assuming that river profiles are at steady state (i.e., ∂z/∂t = 0), that κ = 0, 
and that the advective erosional parameters, uplift rate, and precipitation rate are either constant or take a 
simple form. An important advantage of exploiting inverse methodologies based upon integration to solve 
Equation 1 is that the assumption of steady state is not required and river channel heights are not differ-
entiated in contrast with slope-area analysis (e.g., Schoenbohm et al., 2004). Results from both nonlinear 
and linear inverse modeling of drainage across a range of scales, for either individual river profiles or for 
continent-wide drainage inventories of thousands of profiles, highlight the importance of regional uplift in 
generating river profile shapes (e.g., Goren et al., 2014; Roberts & White, 2010; Roberts et al., 2012). These 
models are designed to seek the smoothest uplift rate history that yields the smallest residual misfit to fami-
lies of observed river profiles (see e.g., Rudge et al., 2015). Results from those models suggest that long wave-
length (>100 km) uplift can generate river profiles in multiple drainage basins that contain common shapes 
(e.g., Glotzbach, 2015; Goren et al., 2014; Pritchard et al., 2009; Roberts et al., 2012; Rudge et al., 2015). A 
benefit of using these models is that they generate a suite of predictions (e.g., uplift rate histories, incision 
rates, denudation, sedimentary flux) that can be tested with independent observations. For example, pre-
dicted uplift histories of North America are consistent with measurements from emergent Cretaceous to 
recent marine rocks (Fernandes et al., 2019).

From a geomorphic perspective, it is surprising that inverse models can be parameterized using a sim-
ple stream power formulation, and yet make meaningful predictions about uplift rate histories. Those re-
sults imply that recourse to spatially or temporally varying erosional processes, such as changes in bedrock 
strength, may not necessarily be required to match the shapes of river profiles at scales ≳10 km (see e.g., 
Fernandes et al., 2019; Roberts et al., 2012). Nonlinear inverse modeling has shown that models of fluvial 
erosion can successfully fit profile shapes without erosional “diffusivity” (i.e., κ = 0), recourse to shock 
wave behavior (n ≠ 1, steeper slopes migrating faster than shallower slopes) or variable parameter values (v 
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is constant; e.g., Roberts et al., 2012; Rudge et al., 2015). Inverse modeling has also shown that meaningful 
(i.e., independently verifiable) histories of uplift can be obtained without requiring precipitation rate or 
drainage planforms to vary (e.g., Fernandes et al., 2019; Rudge et al., 2015). More formally, these studies 
indicate that a one-dimensional formulation contains enough complexity to match most observed river 
profiles such that

 
  

 
( , ),mz zvA U x t

t x
 (2)

where m ∼ 0.25–0.5, A = A(x), and x is distance along a river. These models satisfactorily match the “overall” 
(i.e., long wavelength, >100 km) river profile shapes but are poorer at capturing rapid changes in relief. A 
corollary is that Equation 2 is a good representation of how landscapes evolve at large scales even though 
it inevitably oversimplifies river profile evolution at smaller scales. It does not explicitly contain the mul-
titude of physical, chemical, and biotic processes that determine evolution at such scales (e.g., Lamb & 
Dietrich, 2009; Lamb et al., 2008; Turowski et al., 2007).

2.2. Erosional Processes and Heterogeneous Substrates

Hydraulic, biotic, geomorphic, and climatic processes influence landscape development on a range of scales 
(e.g., Anderson & Anderson, 2010; Attal et al., 2008; Braun, 2002; Whipple & Tucker, 1999; Whittaker & 
Boulton, 2012; Willett et al., 2014). Numerous studies emphasize the importance of erosional processes and 
changes in erodibility of the substrate which to some extent, tends to downplay or even neglect the influ-
ence of regional tectonic uplift (e.g., Baldwin et al., 2003; Gallen, 2018). Erosional complexity, stochasticity, 
and threshold behavior are thought to be dominant over a range of scales, and as a consequence, inverse 
modeling schemes that exploit simple erosional models are not universally accepted.

Processes driving fluvial erosion are often investigated by transforming topography using modeled land-
scape metric measures (e.g., ksn, χ). Variability is examined by making the stream power model more com-
plex by including, e.g., slope-dependent velocity (n ≠ 1), erosion thresholds, and spatiotemporally varying 
erosional parameter values. Sometimes, model predictions are tested against independent observations, in 
order to objectively test assumptions. Driving processes can be investigated by correlating river shapes with 
independent observations. For example, correlation of bedrock strength measurements along the Colorado 
River has been interpreted, as an indication that lithology is the dominant control of river profile geometry 
(Bursztyn et al., 2015). Similarly, correlations between longitudinal profiles and substrate of Appalachian 
rivers have been interpreted as an indication of the general importance of bedrock in controlling river pro-
file shapes (Gallen, 2018). DiBiase et al. (2018) used in situ 10Be concentrations in stream sands from nested 
watersheds of the Young Womans Creek, which is a tributary of the West Branch Susquehanna River that 
drains the unglaciated Appalachian Plateau, to argue that lithologic boundaries between Paleozoic strata 
control the location of changes in erosion rate, and fluvial and hillslope morphology. Zondervan et al. (2020) 
used measurements of substrate strength and hydraulic geometries in the Vouraikos catchment, which 
drains into the Gulf of Corinth, Greece, to calibrate a stream power model and compare the position of 
observed and predicted knickpoints. They suggest that lithology plays a fundamental role in determining 
the pace of fluvial erosion. Changes in the substrate have also been related to changes in channel widths. 
For example, Spotila et al. (2015) argue for lithologic control of river morphology based on correlation of 
channel aspect ratio (width/depth) and bedrock lithology, and that changes in channel width do not neces-
sarily reflect variations in uplift rate, but instead may result from a complex response to bedrock properties.

An apparently straightforward relationship between substrate and topographic relief seems obvious, un-
controversial, and forms the basis for many geomorphic studies (e.g., Campforts et al., 2020; Sklar & Di-
etrich, 2001; Yanites et al., 2017). However, the meaning of such correlations is not straightforward since 
similar river profiles can be due to different processes (e.g., Whipple & Tucker, 1999). For example, the 
shape of the Colorado River and the Grand Canyon knickzone could be caused by regional uplift (see e.g., 
Crow et al., 2014; Roberts et al., 2012). Moreover, changes in substrate do not correlate with changes in relief 
or erosional processes in many places. For example, Gallen et al. (2011) examined the relationship between 
topographic metrics, knickpoint location, and landslide distribution for the Cullasaja basin in the upper 
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reaches of the Little Tennessee River and suggested that local base-level fall, rather than bedrock lithology, 
controls development, and propagation of knickpoints. Duxbury et al. (2015) performed cosmogenic 10Be 
analysis of bedrock and sediment from rivers of the Central Appalachian Mountains which showed that 
there is no obvious difference in erosion rates measured in catchments where different lithologies are in-
cised (e.g., granite, metabasalt, quartzite, siliciclastic rocks).

Despite these studies, it is not clear, how estimates of rock strength can be related to erodibility on the 
spatial and temporal scales at which drainage evolves. It is unclear how spot measurements of rock or joint 
strength can be related to erosion rate, E(x, t) = ∂z/∂t. A central problem is that we do not know, if erosion or 
strength measurements from spot locations scale such that they can be used to reliably predict river profiles. 
For example, laboratory experiments in which saltating grains impact bedrock show that erosion rate is neg-
atively correlated with tensile strength (e.g., Sklar & Dietrich, 2001). However, at larger scales rivers flowing 
over ostensibly strong rock (e.g., fresh basalt) can rapidly (essentially instantaneously) erode O(1–10) m as 
competent columns topple (e.g., Stucky de Quay et al., 2019). This topic has been investigated to some extent 
by changing parameters in advective stream power erosional models (e.g., Yanites et al., 2017). Increasing 
or decreasing the values of parameters that control rates at which slopes propagate upstream (e.g., prefac-
tor v in Equation 2) affects theoretical river profile shapes. However, it is not clear from such theoretical 
approaches that measurements of rock strength can be converted into values of v (or erodibility) from first 
principles. Unfortunately, it is not obvious what independent data can be brought to bear to assess the val-
ues of erodibility used in such studies, and this problem is especially difficult to address on the length and 
time scales at which large rivers erode, e.g., O(102–103) km, O(1–100) Ma. It is also unclear at what scales 
precise values of these parameters or their integrated (i.e., average) quantities matter for how river profiles 
acquire their shapes (e.g., Paul et al., 2014). Clearly, developing a framework to understand how river profile 
shapes are generated across the scales of interest is an important problem. One way to address this chal-
lenge is to quantify the scales at which river profiles are generated. Such a framework could then be used 
to examine correlative, independent, observations of, for example, uplift and lithology at appropriate scales.

2.3. Spectral Analysis

Topographic scaling can be investigated by transforming one-dimensional or two-dimensional data sets into 
the spectral domain, namely, z(x) is transformed into z(k) or z(x, k), where z is elevation, x is distance, and 
k is wave number (spatial frequency; e.g., Bell, 1975; Birnir et al., 2001; Pelletier, 1999; Perron et al., 2008; 
Singh et al., 2011). Previous geomorphic studies using wavelet transforms have shown that, for large African 
rivers, most spectral power occurs at wavelengths ≳100 km (Roberts, 2019; Roberts et al., 2019). At these 
scales, river profiles are characterized by red noise where spectral power (height-squared), ϕ ∝ k−2. At short-
er length scales (higher wave numbers), there is a transition to pink noise where ϕ ∝ k−1, which can be gen-
erated by combining red with white noise (ϕ independent of k) and/or blue noise (ϕ ∝ k). A spectral slope of 
−2 means that the amplitude of topographic features is proportional to their horizontal length. In contrast, 
a spectral slope of 0 (i.e., white noise) is generated by features with amplitudes that are independent of their 
horizontal length. Spectral slopes of 1 (i.e., blue noise) implies that amplitudes increase as wavelengths get 
shorter, which is characteristic of shock wave behavior. These results suggest that regional uplift, which has 
an approximately red spectrum, dominates at long wavelengths. Substrate variability and erosional process-
es, which may have a white/blue spectrum, become emergent at shorter wavelengths (Roberts et al., 2019). 
Numerical models that incorporate stream power erosion and quenched noise can generate realistic river 
profiles (Lipp & Roberts, 2021; Roberts et al., 2019).

The purpose of this manuscript is to build upon these spectral approaches. One objective is to quantify the 
length scales, locations, and amplitudes at which contributors, such as regional uplift and lithology, shape 
the longitudinal profiles of North American rivers. Wavelet transforms are developed and applied to rivers 
including the Arkansas, Columbia, Colorado, Cumberland, Mississippi, Missouri, Nelson, North and South 
Platte, Allegheny, and Kanawha branches of the Ohio, Rio Grande, and Tennessee (Figure 1). Rivers drain-
ing the Appalachian Highlands (Ocmulgee, Savannah, Santee, Roanoke, James, Potomac) are transformed 
and their cross-wavelet power spectra are used to quantify similarities and dissimilarities of river profiles 
from an orogenic belt. Results are used to examine the origins of similar geometries of familial river profiles. 
We then explore how observed spectra can be generated using landscape evolution models that incorporate 
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uplift and changes in substrate erodibility. Scales at which changes in erodibility contribute to topographic 
relief are quantified and amplitudes at which these changes are manifest in river profiles are estimated. 
Finally, a probabilistic view of landscape evolution is developed, which incorporates appropriately scaled 
processes from short (<10 km) to long (>1,000 km) wavelengths. We conclude by discussing how this ap-
proach helps to bridge scale-dependent insights into how fluvial topography is generated.
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Figure 1. North American Drainage. (a) Topographic map from ETOPO1 database of North America showing selected 
rivers (blue lines). A = Arkansas, Cb = Columbia, Cd = Colorado, Cu = Cumberland, Mi = Mississippi, Mr = Missouri, 
N = Nelson, NP = North Platte, OA/OK = Allegheny/Kanawha tributaries of Ohio, RG = Rio Grande, SP = South 
Platte, T = Tennessee, white lines = Appalachian rivers (Figure 7), translucent polygon = extent of Laurentide Ice 
Sheet during Last Glacial Maximum (Batchelor et al., 2019). (b) Long-wavelength free-air gravity from gravity recovery 
and climate experiment (GRACE) database (Tapley et al., 2005); units of scale bar in mGal. (c) Geologic map of North 
America (ngmdb.usgs.gov/gmna; Garrity & Soller, 2009). C/M/P/pC = Cenozoic/Mesozoic/Paleozoic/Precambrian.
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3. Observations and Methodology
3.1. Digital Elevation Model

River profiles were extracted from the ASTER (Advanced Space-borne Thermal Emission and Reflection 
Radiometer) global digital elevation model, which has a vertical accuracy and horizontal resolution of ∼±8 
and 75 m, respectively (Tachikawa et al., 2011). Flow directions were calculated using the D8 algorithm 
from the ArcGIS libraries (Tarboton, 1997).

Figure 1a presents North American topography together with the major rivers that were transformed in this 
study: Arkansas, Columbia, Colorado, Cumberland, Mississippi, Missouri, Nelson, North and South Platte, 
Allegheny, and Kanawha branches of the Ohio, Rio Grande, Tennessee. These rivers traverse a variety of 
physiographic and geologic environments, some of which were affected ∼20 ka ago at the Last Glacial Max-
imum of the Laurentide Ice Sheet (Figure 1a, Gao, 2011; Wickert, 2016). They also drain regions of probable 
dynamic and tectonic support (Figure 1b). Figure 1c shows the location of these rivers superimposed upon 
a geologic map of North America (GMNA; Garrity & Soller, 2009). The six Appalachian rivers analyzed here 
flow from the Appalachian Mountains before traversing the Atlantic Coastal Plains and draining into the 
Atlantic Ocean; names and classification of physiographic provinces follow Fenneman (1928).

3.2. Channels in Frequency Domain

To determine scales at which river profiles are generated, their longitudinal profiles are transformed from 
the spatial domain, z(x), into the space-wave number domain, z(x, k). Perhaps more conceptually simple is 
to first consider converting rivers into the wave number (i.e., spatial frequency) domain using, for example, 
a Fourier transform (e.g., Roberts, 2019). Transformation of rivers into the Fourier wave number domain, 
Z(k), should result in no change in total spectral power, PT, since

 

 
  2 2| ( ) | d | ( ) | d .TP z x x Z k f (3)

Power at a given wave number interval, Pz, is given by

   2( ) 2 | ( ) | , 0 .zP f Z k k (4)

Interpreting power spectra using typical Fourier techniques is challenging for theoretical and practical rea-
sons. First, river profiles are evidently not analogous to stationary functions: they do not, for example, 
start and end at the same elevation. Second, a well-known issue with power spectra generated by Fourier 
transform is power leakage from one wave number to another. Finally, calculated power spectra can be 
noisy. These problems make it challenging to identify sources of power and spectral regimes from trans-
formed profiles based on periodic trigonometric basis functions. An alternative approach is to exploit wave-
let transforms.

The continuous wavelet transform, Wx(s), provides a means to determine spectral power as a function of 
wavelength and distance along river channels (e.g., Daubechies, 1990). Heights are first linearly resampled 
at a fixed horizontal resolution δx, and then mirrored, before being transformed. In this study, the data were 
linearly resampled such that δx = 2 km. The transformation yields estimates of power (ϕ) at evenly spaced 
positions, as a function of scale s. The transformation in discrete form is given by







 
  



 


1

0

( )( ) ,
N

x x
x

x x xW s z
s

 (5)

where N is the number of data points, zx′ are discrete measurements of elevation along the profile, ψ is a 
wave function, which is scaled by s and translated along the profile by x′. We systematically tested a range 
of “mother wavelets” (i.e., basis functions) by changing dimensionless frequencies ω◦ = 4, 6, 8 and orders 
M = 2, 4, 6, 8 of the Morlet and DOG (derivative-of-Gaussian) wavelets, respectively. Wavelet resolution 
was set to δj = 0.1 (Torrence & Compo, 1998). The wavelet power spectrum is given by ϕ(s, x′) = |Wx(s)|2. 
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Distance-averaged power spectra generated from transformed spatial series,  ( )s , which are conceptually 
similar to results of the Fourier transform, can be calculated using





 

1
2

0

1( ) | ( ) | .
N

x
x

s W s
N

 (6)

Resulting power spectra can be compared to Fourier power spectra by converting scales, s, into wave num-
bers and rectifying spectral bias (e.g., Liu et al., 2007; Torrence & Compo, 1998). Scales were calculated fol-
lowing Torrence and Compo (1998) where s sj

j j 2
  where j = 0, 1, …, J. The smallest scale s◦ = 2δx = 4 km, 

and maximum scale J is determined by the number of elevation measurements. A known bias introduced 
by wavelet transformation is that calculated power can be dependent upon the scale being examined. This 
bias is trivial to rectify by dividing power, ϕ(x, k), by the scale with which it is associated. Rectified power is 
calculated so that    1( ) | ( ) |r s Ns .

Examples of applying these spectral methods to the Columbia River are shown in Figure 2. Figure 2a shows 
the profile of the Columbia River extracted from the ASTER Global Digital Elevation Model (GDEM) (see 
Figure 1a). The inverse transform is performed by summing the wavelet transform, Wx, for all scales, s, at 
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Figure 2. Wavelet transforms of Columbia River. (a) Gray line = longitudinal river profile extracted from Advanced Space-borne Thermal Emission and 
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) database (Tachikawa et al., 2011). Labeled black arrows indicate man-made dams; red 
solid and dashed curves = inverse wavelet transform for wavelengths >100 and >1,000 km, respectively. (b) Power spectrum calculated using Morlet wavelet; 
dimensionless frequency, ω◦ = 6. Solid and dashed lines = lower bounds on filters used to generate river profiles in panel (a). (c) Black line = distance-averaged 
wavelet power spectrum as function of wave number, (k) gray line = five point moving average of power spectrum generated from Fourier transformation of 
river profile. Spectral slopes, where power, ϕ ∝ kβ for red (β = −2), pink (β = −1), and white (β = 0) noise are shown. (d) Rectified power as function of wave 
number, ϕr(k); ω◦ = 6 (black) or ω◦ = 4, 8 (gray) (Liu et al., 2007). (e) Rectified power, ϕr, calculated using Mth order derivative-of-Gaussian (DOG) wavelets; 
M = 6 (black) or M = 2, 4, 8 (gray). (f) Identical spectra normalized by (2πk)2 (i.e., flattened on red noise; black curve: M = 6; dotted curves: M = 2, 8); note inset 
spectral slopes. Gray line = best-fitting two-component model with integer spectral slopes indicated by black circle in panel (g). (g) Misfit between observed 
and calculated power spectra using two-component model. α and β = two different spectral slopes; white circle = best-fitting model; black circle = best-fitting 
model for integer slopes.
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each distance, x, along the profile (Equation 6). The inverse transform calculated using all scales from s◦ to J 
faithfully matches the original profile (Section 3.3). Figure 2a also shows the inverse wavelet transform cal-
culated using only wavelengths >100 and >1,000 km, respectively. Figure 2b shows the wavelet power spec-
tra of the Columbia River generated using a Morlet wavelet with ω◦ = 6. The solid and dashed lines show 
the lower limit of the filters used to generate the corresponding profiles shown in panel a. The black curve 
in panel (c) shows the distance-averaged power spectrum generated from the wavelet transform shown in 
panel (b). White, pink, and red noise spectral slopes are indicated by the legend labeled 0, −1, and −2 in the 
top right of panel (c). Figure 2c shows an example of a Fourier transform of the mirrored Columbia River 
profile. Figures 2d and 2e show distance-averaged power spectra generated using wavelets with different di-
mensionless frequencies and orders (see labels and caption to Figure 2). These panels show rectified power 
spectra. Note that the power spectra converge with dimensionless frequencies and orders ≥6.

Figure 2f shows the rectified DOG spectrum normalized by (2πk)2 such that red noise, ϕ ∝ k−2, is a horizon-
tal line. The gray dog-leg line shows the best-fitting two-component spectral model with integer slopes. This 
model was generated by sweeping the parameter space shown by the axes of Figure 2f for best-fitting hinge 
position, and allowing spectral slopes of the two components, α and β, to vary independently (see Roberts 
et al., 2019). The spectral slopes α and β are the short-wavelength and long-wavelength components, re-
spectively. The best-fitting integer slopes are shown by the black circle. The best-fitting noninteger spectral 
slopes are indicated by the white circle in panel (g). The color scale in this figures shows misfit between ob-
served (black curve in panel f) and theoretical (gray line) spectral slopes for the best-fitting hinge position, 
where the two theoretical spectral slopes meet in panel (f). Figure 3 shows examples of river profiles, in-
verse wavelet transforms, wavelet transforms, flattened rectified spectra, and best-fitting theoretical spectra 
for the other 12 large rivers of this study, including the Colorado, Mississippi, and Nelson rivers (Figure 1a).

3.3. Uncertainties

There are three important sources of uncertainty. First, the vertical error of ASTER GDEM data, Δz, is 
∼±8 m, which suggests that the uncertainty in calculated power ϕ is ∼64 m2 (Tachikawa et al., 2011). Rob-
erts et al. (2019) suggested that one way to assess the impact of this source of error was to remove parts of 
the transformed power spectra with power less than, say, 100 m2, and insert random noise with distributions 
equivalent to those in the digital elevation data. They found that adding or removing noise in this way did 
not materially affect conclusions drawn from fitting observed spectra.

Second, satellite measurements can underestimate changes in elevation over minor distances, e.g., the 
depths of narrow gorges. Furthermore, ASTER GDEM data record heights to the top of the water column, 
and this method assumes these heights equate to bathymetry. The difference in height from the bottom to 
the top of the water column tends to be small enough that it does not affect calculated spectra at the scales 
we consider (Roberts et al., 2019). We have tried to avoid large deep lacustrine settings. The biggest water 
body encountered is Lake Winnipeg, which has an average depth of 9–14 m, which is unlikely to affect our 
principal conclusions but will mean that short-wavelength power is underestimated in its vicinity (see Fig-
ure 3e). Similarly, short-wavelength power beneath other lakes is underestimated, but unlikely to affect our 
principal conclusions since these bodies occupy relatively short portions of the river profiles.

Third, applying spectral techniques to signals with large amplitudes close to the start or end of spatial 
series (e.g., headwaters of longitudinal river profiles) generates edge effects (e.g., artificially high power in 
some parts of calculated spectra). Potentially problematical regions can be mapped using cones of influence 
(see e.g., Torrence & Compo,  1998). Mirroring is an alternative means to mitigate edge effects (Roberts 
et al.,  2019). Spectral leakage is also reduced by mirroring and choosing appropriate basis (e.g., mother 
wavelet) functions.

The significance of these sources of error can be assessed by performing inverse wavelet transforms. Inverse 
transformation of the power spectra of North American rivers recovers original signals (longitudinal pro-
files) to a mean error of 0.3% when ω◦ and M = 6. Thus, calculated power spectra are high fidelity forms of 
observed river profiles. The inverse transform of all spectra summed over all k for wavelengths ≥100 and 
≥1,000 km is shown with the actual profile in Figure 2a. For the Columbia River, the filtered inverse wavelet 
transforms closely match the long-wavelength shapes of observed longitudinal profiles (Figure 3).
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3.4. Uplift and Erodibility

To investigate the source of power along North American river profiles, we examined two potential candi-
dates: uplift and bedrock erodibility. First, we examine the spectral content of synthetic river profiles gener-
ated from an uplift rate history that best fits a continent-wide inventory of 4,161 river profiles (see Figure 4). 
The model and its calculated uplift history are described in detail by Fernandes et al. (2019). Figures 4a–4f 
show a subset of the observations and best-fitting river profiles used to generate the calculated uplift history. 
The model was parameterized using a calibrated version of Equation 2 and solved using a damped line-
arized inverse model (Figure 4, Fernandes et al., 2019; Rudge et al., 2015). The predicted uplift history has 
been tested using independent stratigraphic information from a continent-wide inventory of paleobiological 
observations (Figures 4g–4l, see Fernandes et al., 2019). The spectra, ϕI, for the optimal “Columbia” profile 
are shown in Figures 5a–5c. Spectra for the “Colorado,” “Mississippi,” and “Nelson” rivers are in the Sup-
porting Information. Spectra show that the greatest power occurs at wavelengths >100 km and that these 
spectra are characterized by red noise. When compared to the power spectrum of the Columbia River, the 
same high power occurs at longer wavelengths but spectral power at wavelengths <O(102) km is diminished 
(Figure 2).

Second, jointing and fracturing of rock, heterogeneities, and changes in exposed bedrock with time make 
it challenging to confidently estimate substrate erodibility along a given river profile. One approach is to 
explore empirical schemes that relate rock strength to lithology (e.g., Moosdorf et al., 2018; Sklar & Die-
trich, 2001). To do so, we convert a geologic map into a map of erodibility using the approach described 
by Campforts et al. (2020) (Supporting Information). We favor this approach since they explicitly convert 
geologic outcrop into erodibility. This methodology assumes that rock strength, and by inference erodibil-
ity, is a function of lithology. Igneous rocks are classed as strongest with an effective strength unaffected 
by age. Rock strength decreases for metamorphic, sedimentary rocks, and unconsolidated sediments. In 
this scheme, increasing the age of nonigneous rocks increases strength in an approximately exponential 
way. This scheme is broadly consistent with interpretation of rock strength measurements from the Col-
orado Plateau. For example, Bursztyn et al. (2015) suggested that tensile rock strength data showed that 
older, deeply buried rocks are generally stronger than younger rocks, with the exception of limestone and 
Quaternary basalt. We acknowledge that alternative schemes exist that incorporate weathering of basaltic 
rock, jointing, and dipping strata. Description of geologic age, lithology, and assigned erodibility value for 
each rock unit is provided in the Supporting Information. The resulting lithologic erodibility values are 
0.286–1.714. These dimensionless values can be incorporated into landscape evolution models (see Camp-
forts et al., 2020). The smallest resolvable geologic feature on the geologic map is ∼10-km wide, which is 
appropriate for the sampling interval of the river profiles that we investigate. We note that there is a weak 
negative correlation between observations of rock strength measurements collected along the trunk of the 
Green-Colorado River, and erodibility calculated from the geologic map (Supporting Information; R2 = 0.2 
for tensile and compressive strength, respectively, cf. Bursztyn et al., 2015; Campforts et al., 2020).

A reasonable assumption is that changes of slope are generated where erodibility changes, ΔE. Thus we in-
vestigate the spectral content of the ΔE = Ei − Ei − 1 spatial series (see Figure 5d). Figures 5d–5f show the re-
sults from transforming changes in erodibility along the Columbia River. Figure 5d shows substrate colored 
by age along the river profile (see Figure 1). The power spectrum of changes in lithological erodibility along 
the river profiles examined here have greatest power at wavelengths <100 km, and have blue or white spec-
tral slopes. These results suggest that combining spectra of synthetic river profiles generated by smoothly 
varying uplift rate histories with erodibility spectra can reproduce the scaling of observed river profiles.

Power spectra of best-fitting profiles from Figure 5b can be combined with scaled versions of the power 
spectra of the erodibility spatial series (Figure 5e) by simple addition where ϕM(x, k) = ϕI(x, k) + ϕΔE(x, k) 
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Figure 3. Wavelet transforms of North American river profiles. (a) Translucent white curve = profile of Colorado River extracted from Advanced Space-borne 
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) database. Arrows indicate man-made dams: HD = Hoover 
Dam, GCD = Glen Canyon Dam; color map = power spectrum calculated using Morlet wavelet (ω◦ = 6). (b) Distance-averaged spectra of Colorado River 
rectified and then normalized by (2πk)2; black curve = M = 6, dotted curves = M = 2 and 8. Note that inset spectral slopes: 0/−1/−2 = white/pink/red noise. 
Gray line = best-fitting two-component model with integer spectral slopes. (c–x) River profiles, power spectra, and distance-averaged spectra for annotated 
North America river profiles (Figure 1). Gray lines = best-fitting two-component spectral models with integer slopes; LW = Lake Winnipeg. Panels (l), (p), and 
(t) solid gray lines = best-fitting two-component (noninteger) spectral models; dotted lines = best-fitting models with integer spectral slopes.
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(Figure 5g). The distance-averaged power spectrum of this model is presented in Figure 5h, where it is com-
pared with the power spectrum of the Columbia River. Figure 5i shows the difference between the power 
spectra for the actual Columbia River and for the model. Results for the Columbia, Mississippi, and Nelson 
River are presented in Supporting Information.
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Figure 4. North American drainage patterns and uplift history. (a) Major catchments extracted from Advanced Space-borne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model (GDEM) database. Cb = Columbia, Cd = Colorado, M = Mississippi, N = Nelson, SA = Southern 
Appalachian. Albers equal area projection. (b) Observed (gray) and calculated (red dots) river profiles for Mississippi, (c) Colorado, (d) Columbia, (e) Nelson, 
and (f) southern Appalachian catchments. Best-fitting profiles generated by linear inverse modeling of 4,161 river profiles (see e.g., panels g–i; residual rms 
misfit = 1.25; Fernandes et al., 2019). (g–i) Calculated cumulative uplift history at 70, 35, and 0 Ma, respectively. (j) Colored circles and diamonds = marine 
fossil assemblages extracted from Paleobiology database and marine to nonmarine stratigraphic transitions, respectively (colors indicate depositional age). (k–l) 
Comparison of time-averaged uplift rate from inverse model and stratigraphic observations (diamonds in panels j and k) and biostratigraphic observations 
(circles in panels j and l). White circles in panel (l) = results that agree with stratigraphic estimates; red/blue circles = inverse model that over/underpredicts 
uplift rate by factor of >2; black lines = 1:1 relationship (Fernandes et al., 2019).
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3.5. Forward Models of Landscape Evolution

In order to investigate causes of observed spectral regimes, we exploit forward simulations of landscape evo-
lution. Synthetic landscapes are generated using the Basin and Landscape Dynamics (Badlands) algorithm 
developed by Salles (2016). Although the Badlands algorithm includes a range of possible erosion models, 
we focus on the linear stream power formulation which assumes that n = 1 and that hillslope erosion can 
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Figure 5. Wavelet transform of calculated profile and lithology along Columbia River. (a) Gray = best-fitting “Columbia” profile generated by uplift history 
shown in Figure 4. Red solid and dashed curves = inverse wavelet transform for wavelengths >100 and >1,000 km, respectively. (b) Power spectrum of profile 
calculated using Morlet wavelet (ω◦ = 6). Solid and dashed lines = lower bounds on filters used to generate river profiles in panel (a). Color scale is shown top 
left. (c) Black line = distance-averaged power spectrum of calculated river profile as function of wave number, k; gray line = five point moving average from 
Fourier transformation (FFT). Dotted graticule = red noise power spectrum (i.e., power, ϕ ∝ k−2). (d) Colored “bar-code” = lithology along the Columbia River 
extracted from geologic map of North America (GMNA) database (see Figure 1c for key and references). Black curve = erodibility differences: ΔE = Ei − Ei − 1 
(see text). (e) Power spectrum of erodibility spatial series. Color scale = top middle. (f) Black line = distance-averaged power spectra of ΔE spatial series; gray 
line = FFT of erodibility spatial series. Dotted black/blue graticule = white/blue noise spectra (i.e., ϕ ∝ k0, ϕ ∝ (k). (g) Power spectra generated by combining 
spectra of calculated river profile and scaled version of lithologic spatial series (see text for details). (h) Gray line = distance-averaged power spectrum of 
Columbia River profile (see Figure 2). Black curve = power spectrum for calculated river profile (panel c). Dashed/dot-dash/dotted curves = power spectra for 
combined spatial series. (i) Difference between power spectra of observed and calculated river profiles, ΔPower; color scale = top right. Calculated differences 
between observed and calculated spectra are provided for Colorado, Mississippi, and Nelson rivers in Supporting Information.
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be described using a diffusional creep process (Smith & Bretherton, 1972; Tucker & Bras, 1998; Whipple & 
Tucker, 1999). Change in the elevation of a given cell within Badlands is given by

 
      


2( ) ( , , ) ( , , ).mz v AP z z U x y t x y t

t
 (7)

Most parameters are identical to those used in Equation 1. Slope, ∇, and curvature, ∇2, are the maximum 
changes between a given individual cell and surrounding cells, according to the single-flow direction al-
gorithm of Braun and Willett (2013). η is additive noise, which can be designed to generate river profiles 
that have the same spectral content as observed profiles. We can also test whether different distributions of 
erosional parameter values (e.g., v scaled by erodibility or by random noise) can generate observed power 
spectra since Badlands can include spatially variable v on a point-wise basis.

We start by setting uplift rate forcing, U, using results from inverse modeling of a continent-wide inventory 
of longitudinal river profiles for North America (Figure 4, Fernandes et al., 2019). This forcing is applied 
across a triangulated network generated from vertices with a regular spacing of 10 × 10 km (Salles, 2016). 
We use an output time interval of 5.9 Ma, but the chosen model time step length is subject to the Cou-
rant-Friedrichs-Lewy stability condition and is smaller than 5.9 Ma (Courant et al., 1967). We use a small 
value of κ = 10−20 m2 yr−1 to ensure stability and to approximate the parametrization of the inverse model 
(Fernandes et al., 2019; Rudge et al., 2015; Salles, 2016). Sea level is assumed to be invariant. Precipitation 
rate, P = 1 m yr−1, is constant. No adjustments are explicitly made to mimic reorganization of paleocoast-
lines, glacial erosion, or the flexural response to changing crustal loads as the landscape evolves (cf. Salles 
et al., 2017). Erosional parameter values of v, m, and n are constant: 0.99 m0.2 Ma−1, 0.4, and 1, respectively 
(Fernandes et al., 2019). Dynamic evolution of drainage, including drainage divide migration and drainage 
capture, is permitted. At each model time step, the flow network is recalculated for the new set of eleva-
tions which arises in response to the model forcing and erosion. We set the initial boundary condition to be 
z = 0 onshore at 82 Ma. Distribution of Cretaceous marine sediments suggests that most of North America 
was low-lying or marine (see e.g., Fernandes et al., 2019). The offshore region is not parameterized, which 
does not affect our results. In summary, we start by considering the spectra of river profiles extracted from 
a simulated landscape generated using a simple model that includes uplift and erosion. This landscape is 
forced by a smoothly varying uplift rate history and eroded using a simple erosional model in which the 
morphodynamic Péclet number (i.e., the ratio of advective to diffusive transport) is ≫1 almost everywhere 
that is uplifting (i.e., detachment-limited erosion prevails). Vertical features of profiles extracted from these 
landscape evolution models are generated by uplift forcing, by changes in drainage network topology, and 
by erosion rates.

Calculated landscapes as a function of time are shown in Figures 6a–6d. Unsurprisingly, these landscapes, 
generated with η  =  0, match those produced by Fernandes et  al.  (2019) with a median difference (i.e., 
comparing elevations between the two models at the same spatiotemporal positions) of 0.04%, which arises 
from numerical error. Longitudinal profiles of rivers generated by this model are extracted for the trunk 
streams of catchments which approximate the 13 major North American catchments previously described 
(e.g., Colorado, Columbia, Mississippi, Nelson; Figure 1a). The shapes of the profiles approximate both ob-
served profiles and best-fitting profiles calculated by the inverse algorithm (Figures 4 and 6e–6h, Fernandes 
et al., 2019). We note that, while observed river profiles extracted from digital elevation models track the 
water surface, profiles extracted from forward landscape models track the river bed, which is the cause of 
minor differences in elevation (e.g., upper reaches of “Nelson” profile in Figure 6h). In Badlands, these de-
pressions within the channel fill with water and overflow subject to conservation of water.

The Morlet wavelet power spectra for the predicted profiles of the “Columbia,” “Colorado,” “Mississippi,” 
and “Nelson” rivers are shown in Figure 6i–6l. Their distance-averaged spectra from DOG wavelet analysis 
are shown in panels (m–p). The spectra for the other nine river profiles are shown in Supporting Infor-
mation. Discussion of spectral slope trends and their similarity to observed power spectra follows in Sec-
tion 4.3. Landscape evolution models were systematically tested to investigate sources of power at short 
wavelengths. These tests include adding quenched (i.e., temporally invariant) noise generated using the 
OpenSimplex algorithm, which is a modification of the gradient-based noise generation method of Perlin 
noise (Perlin, 1985, 2002). We use this scheme to generate distributions of noise, η(x, y), that have known 
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Figure 6. River profiles calculated from forward landscape simulations. (a–c) Landscape evolution generated using tectonic forcing obtained from 
inverse modeling (see Figure 4, Fernandes et al., 2019). (d) Calculated present-day landscape; red/white/black/pink/blue curves = principal channels of 
“Columbia”/“Colorado”/“Mississippi”/“Nelson”/minor rivers. (e–h) Gray curves = river profiles extracted from landscape shown in panel (d). Solid and 
dashed red curves = filtered inverse wavelet transforms for wavelengths ≥100 and ≥500 km (see panels i–l); transformations performed using Morlet wavelet, 
ω◦ = 6. (i–l) Power spectra for river profiles shown by gray lines in panels (e–h). Black dashed and dotted lines = wavelengths of 100 and 500 km, respectively. 
Gray boxes = null. (m–p) Black curves = distance-averaged derivative-of-Gaussian (DOG) (M = 6) power spectra of profiles shown in panels (e–h). Note 
normalization by (2πk)2 so that red noise slope is horizontal. Gray curves = distance-averaged power spectra for M = 4, 8. Insets indicate spectral slopes: 0, −1, 
−2 = white, pink, red noise; black dashed/coarse dotted/fine dotted lines = spectra for profiles with added noise where maximum amplitudes are 25/50/100 m 
(see Supporting Information).
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power spectral slope distributions, by combining a number of discrete wavelengths of noise in a known 
power ratio. For example, white noise is generated where noise of each wavelength is combined with the 
same maximum amplitude. Red, pink, and blue noise are generated by combining noise of different wave-
lengths where η2 ∝ k−2, η2 ∝ k−1, and η2 ∝ k1. We tested white and blue noise distributions of η, which can 
be regarded as representing noise of the erosional processes due to hydraulic shocks or changes in substrate. 
Although η can be positive or negative, we ensured U + η ≥ 0. We also ran tests in which v was scaled by 
erodibility generated from geologic maps, LE, or by random noise generated in an analogous way to the 
noise, η, previously described (supporting information, Figures S1, S8, and S9). Finally, we added quenched 
noise directly to river profiles extracted from the simple (i.e., no noise) landscape evolution model. Results, 
including power spectra, of these tests are discussed in Section 4.3, shown in Figure 6 and in the Supporting 
Information.

3.6. Cross-Wavelet Spectral Analysis

Here, we seek a methodology that enables the contribution that externally driven uplift makes to families 
of river profiles to be discriminated from other processes. We exploit cross-wavelet transforms to objectively 
compare different river profiles as a function of space and wave number. The cross-wavelet spectrum is 
calculated using


*
,AB A BW W W (8)

where WA is the power spectrum of river profile ax, and 
*BW  is the complex conjugate of the wavelet trans-

form of river profile bx. If both wavelet transforms are real valued, the cross-wavelet spectrum is obtained 
by multiplying the two transformed signals. The resultant cross-wavelet power spectrum, |WAB|, is high-
est where large amplitude signals on both rivers occupy the same distance-wave number space (Grinsted 
et al., 2004; Roberts, 2019).

4. Results
4.1. Power Spectra of North American River Profiles

Figure 2a shows that the Columbia River has a concave-upward profile at long wavelengths with numerous 
knickpoints along its length. The two largest knickpoints occur at distances of ∼900 and ∼1,200 km from 
the mouth of the river. They are centered on the Grand Coulee and Boundary dams. The calculated power 
spectrum of the Columbia River shows that >99% of the power occurs at wavelengths >100 km (Figure 2b). 
At wavelengths <100 km, power is lower and it is determined by the positions of knickpoints. Unsurpris-
ingly, the two dams are significant sources of power at short wavelengths. The two horizontal (solid and 
dashed lines at 100 and 1,000 km, respectively) show the lower bounds of the wavelet spectra used to per-
form inverse wavelet transforms. The resultant filtered profiles are presented in Figure 1a. The error of the 
inverse transform obtained using wavelengths >1,000 km is 4%, or 53 m in terms of error of the mean. The 
equivalent error for wavelengths >100 km is 0.5% or 7 m. These results combined with visual inspection 
of Figure 2a reinforce our assertion that most of this river profile is generated at wavelengths >100 km. 
Distance-averaged power spectra shown in Figures 2c–2f demonstrate the inverse power law relationship 
between ϕ and k. Figures 2f and 2g shows that at wavelengths ≳100 km, the profile broadly follows a red 
noise regime (i.e., ϕ ∝ k−2). At shorter wavelengths, distance-averaged power spectra exhibit pink noise (i.e., 
ϕ ∝ k−1). Spectra for 12 North American river profiles are presented in Figure 3. Similar results are obtained 
for different rivers, e.g., >94% of the Colorado River profile is generated at wavelengths >1,000 km, >99% 
is generated at wavelengths >100 km. The results for the Mississippi and Nelson profiles are >1,000 km: 
>97%, >100 km: >99%. These results show that shapes of major North American river profiles are princi-
pally generated at long wavelengths.

Most of the river profiles have distance-averaged spectra that transition from red noise at long wavelengths 
to pink noise at wavelengths ≲100 km (Figure 3). The misfit between observed and calculated spectra con-
tain well-defined minima in most cases. Trade-offs exist between calculated spectral slopes (e.g., Figure 2g), 
especially when observed spectra contain localized prominent peaks. A clear example of an additional peak 
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in distance-averaged power is shown between wave number bands 5 × 10−6 and 10−5 m−1 along the Col-
orado River profile. In contrast, the best-fitting two-component spectral models for the Rio Grande and 
Allegheny River contain a pink noise spectrum at the longest wavelength. However, a red noise spectrum 
at long wavelengths and a pink noise spectrum at short wavelengths fit the observed distance-averaged 
spectra almost equally as well, if the transition between spectra regimes occurs at a wavelength of ∼10 km 
(Figures 3p and 3r).

4.2. Sources of Spectral Power

We wish to explore environmental factors that could generate observed power spectra. There are two widely 
accepted sources of fluvial forcing: regional uplift and bedrock erodibility. A significant constraint on the 
pattern and history of regional uplift of North America is the distribution of Cretaceous to Recent marine 
sedimentary rocks (Figures 1c and 4j, see e.g., Fernandes et al., 2019). These observations suggest that sig-
nificant parts of North America have been uplifted by hundreds to thousands of meters since Cretaceous 
times. The results of earthquake tomographic models show that the kilometer-scale topography of western 
North America is not entirely supported by crustal thickness variations (e.g., Buehler & Shearer,  2016). 
Instead, shear wave tomography, P-to-S receiver functions, long-wavelength free-air gravity anomalies and 
basalt chemistry imply that the subplate mantle plays a key role in generating and maintaining regional 
topography (e.g., Klöcking et al., 2018; Wilson et al., 2005). Significant rivers (e.g., Columbia, Colorado, 
Nelson, North and South Platte, Missouri, Arkansas) flow away from the dynamically supported western 
North American swell (Figure 1b, Lipp & Roberts, 2021; Roberts et al., 2012).

Inverse modeling of drainage patterns indicates that the swell grew in a series of stages during Cenozoic 
times (Figure 4). Spectral analysis of best-fit river profiles calculated by inverse modeling shows the impor-
tance of red noise over a range of wave numbers. Calculated spectra match the long-wavelength (>100 km) 
components of spectra generated by transforming observed river profiles (Figures 2b and 5b). However, 
the spectra of these best-fitting theoretical profiles underpredict power at wavelengths ≲100 km (e.g., Fig-
ure 5c). Roberts et al. (2019) suggested that adding white or blue noise to power spectra can produce the 
observed self-similarity at wavelengths ≳100 km, with a transition to pink spectral slopes at shorter wave-
lengths. To investigate possible sources of underpredicted spectral power at short wavelengths, we first ex-
plore the spectral content of changes in erodibility along significant river profiles (e.g., Columbia, Colorado, 
Nelson, Mississippi). Distance-wavelength maps of erodibility power are different to those produced by 
transforming river profiles generated by smoothly varying uplift rate histories (compare Figures 5b and 5e). 
Power spectra of erodibility spatial series have greatest power at wavelengths <100 km, where spectra have 
a white noise distribution (Figures 5e and 5f, Supporting Information). At longer wavelengths, distance-av-
eraged power decreases gradually, resembling blue noise.

Figure 5g presents a power spectral map generated by combining the spectra of calculated river profiles 
(Figure 5b) and erodibility (Figure 5e). A distance-averaged spectrum from this model is compared with 
the observed power spectrum of the Columbia River in Figure 5h. The black curves in this panel show the 
results of adding erodibility spectra scaled by factors of 10–1,000 to the best-fitting theoretical profile. Fig-
ure 5i shows the difference between power spectrum of the observed and calculated profile (i.e., Figures 3b 
and 5g). The scaled version of the erodibility spectra that most closely resemble spectra of the observed 
profile at short wavelengths indicates that changes in erodibility generate distance-averaged power of up 
to ∼10−2 m2, which indicates that, on average, changes in erodibility generate <1 m of signal along the Co-
lumbia River. Changes in erodibility generate larger signals at a few positions along the river (i.e., yellow 
strips at wavelengths <100 km in Figure 5g). At these locations, power reaches up to ∼104 m2 (i.e., signal 
amplitudes reach ∼100 m). The biggest discrepancies between observed and calculated spectra lie between 
∼500 and 1,500 km distance, for wavelengths of 100–500 km, which coincides with the position of the two 
large dams (e.g., Figures 2a and 5i). Analyses of the other 11 large rivers (e.g., Colorado, Mississippi, Nelson) 
yield similar results (Supporting Information). This approach provides a basis for defining horizontal and 
vertical scales at which changes in erodibility generate changes in relief.

A remaining concern is that comparing the absolute difference in power spectra tends to imply that parts 
of signals with small amplitudes look similar. Figure S6 of supporting information shows the percentage 
difference between observed and calculated spectra. This figure suggests that the models are a high fidelity 
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representation of observed power spectra at long wavelengths. However, loci of short-wavelength power 
(e.g., knickpoints) are not well constrained. These results imply that, while it is straightforward to use erod-
ibility to represent the average properties of river profiles at short wavelengths, precise loci of knickpoints 
may be more poorly constrained.

4.3. Landscape Simulations With Added Noise

Most spectral power of synthetic river profiles extracted from simple (i.e., constant value of v, no added 
noise, η = 0) three-dimensional landscape evolution model is concentrated at wavelengths >100 km (Fig-
ure 6). Spectra have a red noise distribution across all wavelengths such that z2 ∝ k−2. In these cases, the 
inverse transforms of spectra match input signals with 5% error, even when power at wavelengths <500 km 
is omitted from the reconstruction (Figures 6e–6l). This result is borne out in the distance-averaged power 
spectra for profiles of larger rivers (e.g., Colorado, Columbia, Mississippi). Although noisy, these spectra 
do not exhibit significant increases or decreases in power as a function of wave number when normalized 
by (2πk)2 (Figures 6m–6p, and supporting Figure S9). This result reflects the fact that power spectra of cal-
culated river profiles are also broadly self-similar across all scales (Figures 5a–5c). These combined results 
suggest that the forcing which moderates landscape evolution at wavelengths ≲100 km is absent. Since the 
model is only forced by the regional uplift history generated by inverse modeling of observed river profiles, 
the absence of pink noise suggests that tectonic forcing is also self-similar, an inference that previously been 
made (e.g., Flament et al., 2013; Hoggard et al., 2016; Ricard et al., 1993).

Figures 6m–6p also show spectra for river profiles that are the same as the final calculated profiles pre-
sented in Figures 6e–6h, but with noise. White noise was added to the final predicted longitudinal profiles, 
commensurate with the spectral power of erodibility at wavelengths ≲100 km (Figure 5). These profiles do 
contain clear, systematic changes in power normalized by (2πk)2. As wave number increases, the transition 
from red to pink noise is evident. This transition is more dramatic and occurs at smaller wave numbers when 
the amplitude of added noise is greater. Adding noise with maximum amplitudes of ≤100 m is enough to 
generate dramatic changes in power spectral slope, similar to those visible in the power spectra of observed 
river profiles. This result implies that processes not incorporated within the forward model parametrization 
generate features which are small in amplitude and wavelength in comparison to the self-similar tectonic 
forcing, but are nevertheless emergent at smaller scales.

An alternative approach is to add noise directly into the space-time dependent landscape evolution 
model through, say, η of Equation 7. This addition can also generate increased power and changes in 
spectral slope at short wavelengths in synthetic river profiles (see supporting information Figure S10). 
It is also straightforward to test the impact of noisy erosional prefactors or of erodibility scaled by the 
observed lithology (e.g., v, supporting Figures S9 and S11-S12), as a proxy for variable substrate strength. 
The results imply that adding noise provides a means to generate synthetic river profiles that are similar 
to observed profiles. Consistent with analyses of observed profiles, power added by noise has maximum 
amplitudes of ∼100 m. Increases of power of this magnitude arise in several tests, whereby noise is add-
ed to v, so that it varies between 0 and 2 m0.2 Ma−1 (as opposed to the calibrated value of ∼0.99 m0.2 Ma−1) 
with excursions in η of ∼0.07 mm yr−1 (Supporting Information). Results for tests where noise in η and 
in v varies through space and time did not generate significant changes in power spectra since the noise 
was not quenched (i.e., consistent features do not arise through time) and temporally variable random 
signals are likely to destructively interfere. However, we have shown that several different sources of 
spatially variant quenched noise can generate permanent changes in power spectral slope for river pro-
files generated by landscape simulation, approximating the scaling regimes observed in North American 
river profiles.

This approach provides a potential means of modeling landscape evolution across the scales of interest and 
introducing appropriately scaled structure (e.g., quenched noise as a proxy for substrate variability) that 
is not considered by inverse modeling of river profiles. It also provides a formal validation of the process 
of adding noise to generate short-wavelength signals to more closely approximate those observed in land-
scapes, which are not generally well replicated in simple forward models of landscape evolution subject to 
stream power law erosion.

WAPENHANS ET AL.

10.1029/2020JF005879

17 of 25



Journal of Geophysical Research: Earth Surface

4.4. Appalachian River Profiles and Spectra

Sources of power can also be investigated by comparing river profiles and environmental factors from 
neighboring catchments. Here, we focus on Appalachian rivers, where environmental processes are debat-
ed (Figures 7 and 8). The Appalachian orogeny occurred in Paleozoic times and the post orogenic mountain 
range occurs on crust that is ∼50-km thick (see e.g., Buehler & Shearer, 2016). The crust is thinner beneath 
the coastal plain and overlain by Cenozoic sedimentary rocks (Garrity & Soller, 2009). These two physi-
ographic provinces are separated from the Appalachian mountains by the Fall Line. This boundary runs 
parallel to the eastern coastline and marks a boundary of short but rapid elevation change, expressing itself 
in the drainage as a series of knickpoints. Present-day Appalachian topography is attributed to erosion of an 
ancient orogen, subplate support, the interaction of drainage patterns with lithology at the Fall Line, and to 
some extent glacial isostatic adjustment (e.g., Gallen et al., 2013; Reed, 1981; Rowley et al., 2013). During the 
Last Glacial Maximum the Laurentide Ice Sheet probably extended across the northern rivers of this region, 
which means that its peripheral bulge probably continued further south. Prior to this time, ice sheet melt 
created discharge fluctuations as far south as the Rio Grande (Wickert, 2016). Glacial isostatic adjustment 
has undoubtedly influenced sediment transport and incision rates of the Hudson, Delaware, Susquehanna, 
and Potomac rivers over the last several thousands of years (Pico et al., 2019). Here, we focus our analyses 
on river profiles draining the southern Appalachians.

Figure  7a shows the distribution of Cenozoic marine rock recorded across the southern Appalachians, 
long-wavelength free-air gravity anomalies, and six of the major rivers draining this region. Figure 7b shows 
these rivers superimposed upon the geologic map. Figure 7c presents river profiles, substrate, and calculat-
ed changes in erodibility. These observations are spectrally transformed and a subset are shown in Figure 8. 
Inverse wavelet transforms for wavelengths >100 km are presented in Figure 7c. Spectra are provided with-
in the Supporting Information. These river profiles exhibit a similar inverse power law relationship as found 
elsewhere. The greatest power occurs at the longest wavelengths with evidence of a transition from red to 
pink noise at a wavelength of ∼100 km.

Cross-wavelet analysis was carried out to determine scales and positions of dissimilarities and similarities 
of river profiles. Spectra were calculated using the Roanoke River profile, which drains the center of the 
topographic swell, for signal ax (see Equation 8). Figures 8g and 8h show two examples of cross-wavelet 
power spectra for three river profiles. The Santee and James profiles are very similar to the Roanoke 
profile at wavelengths >100 km. At shorter wavelengths, they match well at finite positions along these 
different profiles. Figure 8i shows the wave number-averaged (i.e., mean) power at wavelengths >100 km 
along the six river profiles. Cross-wavelet power at these longer wavelengths is lower for profiles that are 
more distal to the Roanoke. These results imply that the long-wavelength shapes of profiles are similar 
at the center of the swell (i.e., in the vicinity of the Roanoke) and that they become more dissimilar 
toward the edges of the swell. We note that erodibility along these profiles have similar distributions 
to those shown for longer North American river profiles. These results imply that the bulk of shapes of 
Appalachian rivers are generated by regional uplift, which created shared river profile shapes at longer 
wavelengths. Changes in erodibility of substrate play an emergent role in moderating profile shapes at 
wavelengths <100 km.

4.5. Summary

Figure 9 summarizes the results of our study. Figure 9a presents spectra for the Colorado, Columbia, Mis-
sissippi, and Nelson rivers together with mean spectra for the 13 significant rivers of Figures 1 and 3. Spec-
tra for nine additional rivers that lie between the Colorado and Mississippi and were omitted for clarity. 
Figure 9b shows mean spectrum, where power is multiplied by (2πk)2. This spectrum is characterized by 
red noise at wavelengths ≳50 km and pink noise at shorter wavelengths. To investigate the sources of these 
signals, we examine the distance-averaged spectra of 13 synthetic rivers generated by forcing the Badlands 
landscape evolution model using the uplift history presented in Figure 4.

These examples were extracted at locations approximate to those of actual rivers (i.e., Arkansas, Co-
lumbia, Colorado, Cumberland, Mississippi, Missouri, Nelson, North and South Platte, Allegheny, and 
Kanawha tributaries of the Ohio, Rio Grande, Tennessee; Figure 6d). Synthetic river profiles are char-
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acterized by red noise (i.e., ϕ ∝  k−2), which indicates self-similarity (Figure  9c). They lack the pow-
er of observed rivers at wavelengths O(10)  km and do not display pink noise. Second, we examine 
the potential contribution that lithologic heterogeneity makes to power spectra. Figure 9d shows the 
mean spectrum of the erodibility spatial series for these 13 rivers, which is characterized by blue noise 
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Figure 7. Appalachian drainage, lithologic, and uplift patterns. (a) Topography extracted from ETOPO1 database. 
Red/black/blue contours = positive/zero/negative long-wavelength (≳800 km) free-air gravity anomalies at intervals 
of 5 mGal extracted from gravity recovery and climate experiment (GRACE) database (Figure 1). Colored circles/
squares = uplifted Cenozoic marine sedimentary rocks with paleobathymetric constraints from Paleobiology Database 
(see e.g., Fernandes et al., 2019). See panel (b) for scale bars. Labeled white curves = Ocmulgee (Oc), Savannah 
(Sv), Santee (St), Roanoke (Ro), James (Ja), and Potomac (Po) rivers. Inset map shows location of panel (a). (b) 
Geologic map of North America. White curves = major rivers. Scale bar for Cretaceous to recent rocks; brown/blue/
purple = Paleozoic rocks (see Figure 1c for color scale). (c) Labeled gray lines = river profiles from panels (a and b); 
colored boxes = lithology along each profile; black spikes = change in calculated erodibility, ΔE(x), along each profile. 
Red lines = inverse wavelet transforms for wavelengths >100 km (see Figure 8).
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at wavelengths ≳50 km and white noise at even shorter wavelengths. Figure 9e shows the mean dis-
tance-averaged spectrum of observed rivers which once again shows that red noise transitions into pink 
noise at wavelengths shorter than ∼100  km. Observed river profiles can be generated by combining 
long-wavelength profiles and short-wavelength changes in erodibility calculated from lithologic heter-
ogeneity (Figures 9f and 9g).

We propose that the bulk of shapes of North American river profiles are generated at wavelengths >100 km 
(Figure 9a). Inverse and forward models that are calibrated with independent geologic observations suggest 
the landscape is externally forced by the long-wavelength pattern of regional uplift (Figures 9c and 9f). Riv-
er profiles draining the Appalachian Belt have highest cross-wavelet power (i.e., the most similar shapes) 
at these wavelengths (Figures 8g and 8h). At long wavelengths, >O(10) km, spectra of North American 
rivers exhibit red (i.e., Brownian) noise (Figures 2 and 3). We note that dynamic topography generated and 
maintained by mantle convective processes has a similar spectrum (Hoggard et al., 2016). This similarity 
suggests that mantle geodynamic processes play a significant role in sculpting fluvial landscapes in space 
and time. The corollary is that suites of river profiles indirectly record the evolution of subplate thermal 
anomalies. At shorter wavelengths, river profile spectra have less power and pink noise is emergent (i.e., 
ϕ ∝ k−1, Figures 2f and 3). Synthetic profiles forced by a combination of smoothly varying uplift histories 
and stream power erosion do not exhibit this short-wavelength power (Figure 9c). We suggest that power 
at these wavelengths is principally generated by small amplitude changes in erodibility, which have blue or 
white noise characteristics (Figure 9b). Erodibility appears to add <1 m of relief to river profiles on average 
but can be locally significant. For example, it can generate up to ∼100 m of relief at short wavelengths (tens 
of kilometers or less).

5. Conclusions
Wavelet spectral analysis is applied to selected longitudinal river profiles from North America. This 
technique enables us to quantify locations and scales at which shapes of river profiles are generated. 
Cross-wavelet spectral analysis of Appalachian river profiles is carried out to quantify similarities and 
discrepancies along river profiles. We investigate the origins of spectral power by transforming synthetic 
river profiles generated by inverse modeling of large inventories of observed river profiles as a function of 
uplift rate history. We transform changes in substrate erodibility and explore how its spectral content can 
be combined with spectra generated from synthetic river profiles forced by smooth patterns of regional 
uplift. We also examine how landscape simulations can be parameterized, so that they predict synthetic 
river profiles that are consistent with observed profiles over the scales of interest. Most of the shapes of 
North American river profiles can be explained as a consequence of external forcing by smoothly varying 
uplift rate histories and of stream power erosion. A linear version of the stream power formulation (e.g., 
constant erosional parameter values, zero substrate variability, invariant precipitation, discharge a func-
tion of upstream drainage area) encapsulates sufficient complexity to match observed profiles at scales 
>100 km. We propose that changes in substrate erodibility can account for minor changes in river profile 
shapes that cannot be explained by variations of regional uplift rate. A future challenge is parameterization 
of landscape evolution models so that they contain appropriate scalings. Incorporation of erodibility and 
environmental variability is difficult to achieve deterministically since the way in which these processes 
change on geologic time scales is poorly understood. A pragmatic way forward is to insert environmental 
variability into landscape simulations by incorporating stochastic distributions that honor the spectral con-
tent of observed landscapes.
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Figure 8. Elevation and erodibility spectra for selected Appalachian river profiles. (a) Power spectra for Santee River profile (Figure 7). Solid line = lower limit 
of filter (100 km) used to perform inverse wavelet transform (Figure 7c). (b) Wavelet power spectrum of change in erodibility, ΔE(x), along Santee River; see 
Figure 7c for ΔE(x) spatial series. (c and d) and (e and f) Power spectra for Roanoke and James river profiles. (g and h) Cross-wavelet power spectra between 
Roanoke and Santee or James river profiles; light colors = similar portions of profiles in wave number-distance space. (i) Average cross-wavelet spectra for 
river profiles, z(x), for wavelengths >100 km. Oc = Ocmulgee, Sv = Savannah, St = Santee, Ro = Roanoke, Ja = James, Po = Potomac. All profiles compared to 
Roanoke profile.
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Figure 9. Principal contributions to scaling of power spectra. (a) Black curve = mean distance-averaged power spectrum for 13 North American river profiles 
(Figures 1–3). Labeled gray lines = spectra of Colorado, Columbia, Nelson, and Mississippi river profiles. (b) Black line = mean power spectrum from panel 
a multiplied by (2πk)2. Gray band = best-fitting two-component spectral model; red and pink noise = spectral slopes −2 and −1, respectively. (c–e) Long-
wavelength and short-wavelength contributions to landscape in wave number space. (c) Mean spectrum from 13 river profiles calculated from landscape 
simulation (Figure 6). Solid black = rectified spectrum multiplied by 106; gray band = red noise. (d) Black line = mean spectrum from 13 erodibility profiles 
along observed river profiles (Figures 1 and 5). Gray lines = best-fitting two-component spectral model. (e) Black line = mean power spectrum from panel 
a multiplied by 106. Gray band = best-fitting two-component model from panel (b). (f–h) Summary of long-wavelength and short-wavelength contributions 
to river profiles. (f) Black line = long-wavelength components of Columbia River profile generated by uplift and erosion. (g) Black line = planform of river 
superimposed upon lithologic variation (see Figure 1 for scale bar). (h) Columbia River profile.
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Data Availability Statement
ASTER GDEM database can be downloaded from https://asterweb.jpl.nasa.gov/gdem.asp. Wavelet trans-
forms performed using modified version of the Machine Learning Python module (https://mlpy.sourceforge.
net). Software, example of river profile and plotting script archived at http://doi.org/10.5281/zenodo.4013135. 
Badlands algorithm can be accessed at https://badlands.readthedocs.io. Perlin noise generated using modi-
fied version of Noise 1.2.2 Python module (https://pypi.org/project/noise).
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